HP-IB Programming Guide

[ackaro

For the HP 8752A and HP 8753C Network Analyzers with the
HP Vectra Personal Computer using Microsoft® QuickBASIC 4.5

Introduction

This programming guide is an introduction to remote oper-
ation of the HP 8752A and 8753C Network Analyzers with
an HP Vectra Personal Computer (or IBM compatible) using
the HP 82335A HP-IB Command Library and Microsoft
QuickBASIC 4.5. This is a tutorial introduction, using pro-
gramming examples to demonstrate the control of network
analyzers with HP-IB commands. The example programs
are on the Example Programs disk (part number
08753-10020) included with the operating manual. This
document is closely associated with the HP-IB Quick
Reference for the HP 8700-series network analyzers, which
provides complete programming information in a concise
format. Included in the HP-IB Quick Reference is an

alphabetical list of HP-IB mnemonics and their explanations.

This note assumes that the reader is familiar with the opera-
tion of the network analyzer and the HP Vectra Personal
Computer (or compatible), particularly HP-IB operation
using the HP 82335A Command Library. This document is
not intended to teach QuickBASIC programming or to
discuss HP-IB theory except at an introductory level. See the
section entitled Reference information for documents better
suited to these tasks.

Reference information

HP 8752A /8753C Network Analyzer literature
User’s Guide
Quick Reference
Operating Manual

HP-IB and HP Vectra Personal Computer literature
Tutorial Description of the Hewlett-Packard Interface Bus
Condensed Description of the Hewlett-Packard Interface Bus
HP 82335A HP-IB Command Library Manual

Microsoft QuickBASIC 4.5 literature
Microsoft QuickBASIC: BASIC Language Reference

Microsoft QuickBASIC: Learning and Using
Microsoft QuickBASIC

Microsoft QuickBASIC: Programming in BASIC:
Selected Topics

Microsoft® is a LLS. registered trademark of Microsoft Corp.

Table of contents
Introduction

Notes on QuickBASIC .11 /1y
Basic Instrument Control 3
Measurement Programming 6
Basic Programming Examples: 8
Making measurements:00 8
1. Setting up a basic measurement 8

Performing calibrations: 10

Preparation

1. System. Connect the network analyzer to the com-
puter with an HP-IB cable. The network analyzer has
only one HP-IB interface, but it occupies two addresses:
one for the instrument and one for the display. The dis-
play address is the instrument address with the least
significant bit complemented. The default addresses are
16 for the instrument and 17 for the display. Other
devices on the bus cannot occupy the same address as

2A. l-portcalibrationol 11 the network analyzer.
2B. Full 2-port calibration (HP 8753C) 14
TranSferting datar oveoeeroiniiiiiin, 19 2. Computer. Turn on the computer and load Quick-
3A. Data transfer using ASCII transfer format 22 BASIC by typing @B /L QBHPIB at the M5-DOS
3B. Data transfer using PC-DOS 32-bit prompt. Invoking QuickBASIC in this way will load the
floating point format0.en. 24 Quick library @BHP 1B. GLB, making its contents avail-
3C. Data transfer using the network analyzer able for use.
internal binary format 26
3D. Data transfer using markers 29 3. Network analyzer. Tum on the network analyzer and
Advanced Programming Examples: 33 verify its address by pressing [LOCAL] [SET
Using list frequency mode: coooiiiii 33 ADDRESSES] and [ADDRESS: 875x]. If the address has
4A. ListfrequUencysweepccoevviririnnnnn 33 been changed from the default value (16), return it to 16
4B. Single segment selectiono.oien. 37 to perform the examples in this document by pressing
Using Hmit HNeS:ooveeeenenanannnns. 50 [1[61[x1] [PRESET]. Make sure the instrument is in
SA. Limitlineset-upcoviiiiiiiiiiin 40 [TALKER /LISTENER] mode, as indicated under the
5B. PASS/FAILteStScc.oouiereeeeannnn. 45 [LOCAL]key,since this is the only mode in which the
Storing/recalling instrument states: 47 network analyzer and an HP Vectra can communicate
6A. LRAITSHNG - v.veeenenanenannaneneannns 47 over HP-IB.
6B. Readingcalibrationdata 49 4 Connection. Type the following on the computer in

Miscellaneous Programming Examples: 53

7. Interruptgenerationl 53
8. Userinterfaceccoiiiiiiiiiins 56
Appendix A: Status Reportingoin 63
Al. Errorqueueiiiiiiiiiiiaiinn, 63
A2. Statusregistersoiiiiiieiiain, 66

Equipment
To run the examples in this Programming Guide, the follow-
ing equipment is required:

» HP 8752A or 8753C Network Analyzer.

« HP Vectra Personal Computer (or compatible) with
Microsoft QuickBASIC 4.5, HP 82335A HP-IB Interface
Card, MS-DOS® 3.2 or higher, and at least 320 Kbytes
of memory.

« HP 10833A/B/C/D HP-IB cables to interconnect the
computer, the network analyzer, and any peripherals.

The following equipment is optional:
« HP 85032B 50 ohm type-N calibration kit.

o HP 11857D 7 mm test port return cables (HP 8753C
only).

« A test device such as a filter to use in the example
measurement programs.

MS-DOS® is a U.S. registered trademark of Microsoft Corp.

the immediate portion of the display and all on one line:

CALL IOOUTPUTS(716&, “"PRES;",
LENC"PRES;*)): IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

This presets the network analyzer. If a preset does not
occur, there is a problem. Since many HP-IB problems
are caused by an incorrect address or bad or loose HP-IB
cables, check all HP-IB addresses and connections.

Notes on QuickBASIC

In QuickBASIC, multiple statements are allowed per line,
and line numbers are not required. In the examples in this
programming guide, line numbers are included for clarity.
Each line is preceded by a line number, and each line
number is followed by a complete one-line statement. No
carriage returns are used in the statements although it may
appear that way on the following pages.

The following error trapping line should follow every call to
an I/O routine:

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

In the following example programs, this line is generally
made into a separate routine that can easily be executed after
every call to an 1/0O routine:

CALL IOXXXX: GOSUB ERRORTRAP

If an error occurs, the number corresponding to that error is
assigned to the variable PCIB. ERR and the program
branches to an HP-IB Command Library subprogram for
error handling which displays a message on the computer
screen stating the error number and type.

Since the 100UTPUTS command library routine to send a
command from the computer to the analyzer is called so
often and is so long, it is worthwhile to make it into a sep-
arate routine (called 100UTS here) that can be executed
with a GOSUB statement. If this is done, the line to preset
the analyzer becomes

A$ = “"PRES;": GOSUB 100UTS

and the program END is followed by the ERRORTRAP and
100UTS routines.

END

ERRORTRAP:
IF PCIB.ERR <>NOERR THEN ERROR PCIB.BASERR
RETURN

100UTS:
CALL I0OUTPUTS(7164, AS$, LENCAS)): GOSUB
ERRORTRAP ’

RETURN

The construction of the 100UTPUTS call is as follows:

CALL IDOUTPUTS(716&, AS$, LENCA$)): GOSUB
ERRORTRAP

CALL 100UTPUTS: command. Execute the HP-IB string data
output command.

7164&: address. The data is directed to interface 7 (HP-IB)
and out to the device at address 16 (the network analyzer).
The appended “&" is required by the IO routine, which
expects a long-integer.

As: HP-IB command string. A$ should be set equal to the
mnemonic corresponding to the desired operation before the
GOSUB 100UTS command that will execute the call to
I00UTPUTS is given. ‘

LENCAS$): length. The IOOUTPUTS routine must know the
length (in characters) of the command string it is sending so
that it can append an appropriate line terminator.

GOSUB ERRORTRAP: error trap. The call to an error trapping
routine that must follow every call to an [/O routine.

Just as there are /O commands to send data to the analyzer,
there are I/O commands to receive data from the analyzer.
For more information on this topic, see the section entitled
Transferring Data.

Basic Instrument Control

Preparation for HP-IB control

At the beginning of a program, the network analyzer has to
be taken from an unknown state and brought under com-
puter control. One way to do this is with an abort/clear
sequence, which prepares the bus for activity and the ana-
lyzer for receiving HP-IB commands. In addition, a time-out
should be set (10T IMEQUT), and, if the program will be

transferring data, the end-or-identify mode should be dis-
abled (10EOT). Because a known initial instrument state
makes programs more reliable, the next step is generally to
put the network analyzer into a known state. The most con-
venient way to do this is to send PRES, which returns the
analyzer to the preset state. If preset is not desired and the
status reporting mechanism is going to be used, CLES can be
sent to clear all of the status reporting registers and their
enabled bits.

For an example of the necessary preparation for HP-IB con-
trol in QuickBASIC programs, load the following program

- (stored on the Example Programs disk as IPGIL.BAS). Note

that the first four I/O commands are to the address 7&, the
interface bus. Only the I00UTPUTS command is actually to
the analyzer, address 716&.

10 CALL IOTIMEDUT(7&, 10!): GOSUB ERRORTRAP

Define a system time-out of 10 seconds. (This value is
chosen because most sweeps and calibration calculations are
completed in under 10 seconds.) Time-out allows recovery
from 1/O operations that are not completed in the allowed
number of seconds.

20 CALL IDABORT(7%): GOSUB ERRORTRAP

Halt any bus activity and return active control to the
computer.

30 CALL IOCLEAR(7&): GOSUB ERRORTRAP

Clear syntax errors, the input command buffer, and any
messages waiting to be sent out. This command does not
affect the status reporting system.

40 CALL IOEOIC7&, 0): GOSUB ERRORTRAP

Disable the end-or-identify mode for transferring data. This
prevents both a write operation from setting the EOI line on
the last byte of the write and a read operation from terminat-
ing upon sensing that the EOI line has been set.

50 A$ = “PRES;": GOSUB 100UTS

Send the HP-IB mnemonic PRES to the network analyzer
(address = 716) via the 100UTS subroutine. This presets
the instrument, clears the status reporting system, and
resets all front panel settings except the HP-IB mode and
the HP-IB addresses.

60 END
End program execution.

70 ERRORTRAP:

80 IF PCIB.ERR <> NOERR THEN ERROR.
PCIB.BASERR

90 RETURN

100 100UTS:

110 CALL IOOUTPUTS(7164, AS, LENCAS$)):
GOSUB ERRORTRAP

120 RETURN

This program brings the network analyzer to a known
state and prepares it to respond to HP-IB control.

The network analyzer will not respond to HP-IB com-
mands unless the remote line is asserted. When the
remote line is asserted and the analyzer is addressed to lis-
ten, it automatically goes into remote mode. Remote mode
means that all front panel keys except [LOCAL] and the
line power switch are disabled. The command 10ABORT
asserts the remote line, which remains asserted until the
command I0LOCAL is executed. Another way to assert the
remote line is to execute

CALL IOREMOTE(716&): GOSUB ERRORTRAP

This statement asserts the remote line and addresses the net-
work analyzer to listen, thereby putting it into remote mode.
Now no front panel key will respond until [LOCAL] is
pressed.

The local key can also be disabled with the following
sequence:

CALL IOREMOTE(716&): GOSUB ERRORTRAP
CALL IOLLOCKOUT(7&): GOSUB ERRORTRAP

Now no front panel key (including [LOCAL]) except the line
power switch will respond. The analyzer can be returned to
local mode temporarily with the following command:

CALL IOLOCAL(716&): GOSUB ERRORTRAP

However, as soon as the analyzer is next addressed to listen,
it goes back into local lockout. The only way to clear local
lockout, other than cycling power, is to execute

CALL IDLOCAL(7&): GOSUB ERRORTRAP

This disables the remote line on the interface, puts the
instrument into local mode, and clears local lockout.

Commands

A computer controls the network analyzer by sending it
commands over HP-IB. Each command is specific to the
network analyzer and is executed automatically, taking pre-
cedence over analyzer manual control. A command applies
only to the active channel unless functions are coupled
between channels, just as with front panel operation. Most
commands are equivalent to front panel functions.

No operand commands

The simplest command that the network analyzer accepts is
one that requires no operand. For example, AUTO is a no
operand command. Leave the previous program in the main
window and put the cursor in the immediate window. Now
execute

As$ = "AUTO;"™: GOSUB 100QUTS

In response, the network analyzer autoscales the active
channel just as it would if [SCALE REF] J[AUTO SCALE]
were pressed on the analyzer’s front panel.

The semicolon following AUTO terminates the command
inside the network analyzer. It clears the active entry area
and prepares the network analyzer for the next command. If
there is a syntax error in a command, the network analyzer
will ignore the command and look for the terminating semi-
colon. When it finds this terminator, the network analyzer
starts processing incoming commands normally. Characters
between the syntax error and the next terminator are lost. A
line feed can also act as terminator. The QuickBASIC
I00UTPUTS routine, which is called from the user-defined
subprogram 100UTS, automatically transmits a carriage
return/line feed following the data if there is not a semi-
colon at the end of the statement.

The 100UTPUTS routine will transmit all commands listed,
as long as they are separated by commas or semicolons. All
the information enclosed in quotes will be transmitted liter-
ally. A carriage return/line feed is transmitted after each
command, but this can be prevented by separating com-
mands with semicolons instead of commas.

The network analyzer does not distinguish between upper
and lower case letters. For example, execute

A$ = "auto;'": GOSUB 100UTS

On/off commands

The network analyzer also accepts a command that turns a
function on and off. Execute

As$ = “DUACON;": GOSUB 100UTS

This activates dual channel display mode on the network
analyzer. To restore single channel display mode, execute

A$ = "DUACOFF;™: GOSUB I100UTS

The command is composed of the root mnemonic DUAC
(dual channel) and ON or OFF.

In addition, the network analyzer has a debug mode to aid
in troubleshooting systems. When debug mode is on, the
network analyzer scrolls incoming HP-IB commands across
the display. To turn this mode on manually, press [LOCAL]
[HP-IB DIAG ON]. To turn it on over HP-IB, execute

A$ = “DEBUON;": GOSUB 100UTS

Parameter setting commands

The analyzer also accepts commands that set parameters.
For example, execute

A$ = "STAR 10 MHZ;": GOSUB 100UTS

The network analyzer now has a start frequency of 10 MHz.
The STAR 10 MHZ command performs the same function as
keying in [START] [1] [0] [M/u] from the network ana-
lyzer's front panel. STAR is the root mnemonic for the start
key, 10 is the data, and MHZ is the units. The network ana-
lyzer’s root mnemonics are derived from the equivalent key
label if possible and from the common name for the function
if not. The HP-IB Quick Reference lists all the root mnemonics
and all the different units accepted.

Notice that the front panel remote (R) and listen (L) HP-IB
status indicators are on. The network analyzer automatically
goes into remote mode when it is sent a command with the
100UTPUTS statement.

Interrogate instrument state commands

Each instrument parameter can be interrogated to find its
current state or value with query commands. If a question
mark is appended to the root mnemonic of a command, the
network analyzer will send out the value of that parameter.
For example, the command POWE S DB sets the analyzer's
output power to +5 dBm, and the command POWE? tells
the analyzer to send out the current RF output power
value at the test port to the computer. The program in the
main window can be modified to show the use of this
command by deleting line 50 and inserting the following
lines before the END at line 60.

45 A$ = “POWE?;*: GOSUB 100UTS

S0 CALL IOENTER(716&, REPLY!): GOSUB
ERRORTRAP

SS PRINT REPLY!

This modified program is stored on the Example Programs
disk as IPGI2.BAS.

Now run the program, and the computer will display the
source power level in dBm. The preset level is 0 dBm for the
8753C and —10 dBm for the 8752A. Next change the
power level by pressing [LOCAL] [MENU] [POWER] 1]
[x1], and run the program again.

When the network analyzer receives the command POWE?, it
prepares to send out the current RF source power level. The
QuickBASIC statement CALL IOENTER(716&, REPLY!):
GOSUB ERRORTRAP addresses the analyzer to talk, thereby
allowing it to transmit information to the computer. This
turns the network analyzer front panel talk light (T) on. The
computer places the data transmitted by the network ana-
lyzer into the variable listed in the I0ENTER statement. In
this case, the network analyzer transmits the output power
value, and this gets placed in the real number variable
REPLY!,

The 10ENTER statement takes the binary data sent out from
the network analyzer and formats it into a real number.
There are other I/O routines for entering a string
(I0ENTERS), an array of real numbers (I BENTERA), and
unformatted data (I0ENTERAB, 10ENTERB). The data being
requested is determined by the /O routine and must corre-
spond to the variable being received.

On/off commands can be also be interrogated. The reply is
1if the function is on and 0 if it is off. Similarly, if a com-
mand controls a function that is underlined on the network
analyzer display when active, interrogating that command
yields 1 if the command is underlined and 0 if it is not. For
example, there are nine options in the format menu, and
only one is underlined at a time. Of the nine, only the
underlined option will return 1 when interrogated.

For instance, rewrite line 45 as
45 AS$ = "DUAC?:;": GOSUB I00UTS

Run the program once and note the result. Then press
[LOCAL] [DISPLAY] [DUAL CHAN] to toggle the display
mode, and run the program again to observe the difference.

Another example is to rewrite line 45 as
45 AS$ = “PHAS?;": GOSUB I00UTS

In this case, the computer will display 1, only if phase is cur-
rently being displayed on the network analyzer. Since the
command only applies to the active channel, the response to
the PHAS? inquiry depends on which channel is active.

Held commands

A held command is one that cannot be interrupted during its
execution. When the network analyzer is executing a held
command, it holds off processing new HP-IB commands,
halting HP-IB operation until the held command completes
execution. Some examples of held commands are DONE,
PRES, and SING.

While a held command is executing, the network analyzer
will still service the HP-IB interface routines, such as
10SPOLL, IOCLEAR, and 10ABORT, all of which must be
called and followed by error trapping. Executing a call to
10CLEAR will abort a held command, leaving its execution
to be completed as if it had been begun from the front panel.
These routines (10SPOLL, IOCLEAR, and I10ABORT) also
clear the input buffer, destroying any commands received
after the held command. If the network analyzer has halted
the bus because its input buffer was full, executing a call to
the routine 10ABORT will release the bus.

Operation complete (OPC)

The operation complete (OPC) function allows synchroniza-
tion of the program by requiring the current command to
complete execution before the next command can begin. For
instance, a program should not have the operator connect
the next calibration standard while the network analyzer is
still measuring the current one. To provide OPC informa-
tion, the network analyzer uses its OPC reporting mecha-
nism, which indicates when the execution of certain key
commands has been completed. The function is activated by
sending either OPC or OPC? immediately before an OPC’able
command. When the command completes execution, bit 0 of
the Event Status Register is set. If OPC? is interrogated, the
network analyzer outputs 1 when the command completes
execution.

The program in the main window can be modified to show
the use of the PC? command by deleting lines 45 through
55 and inserting the following lines before the END at line
60.

44 A$ = "SWET 3 S; OPC?; SING;*: GOSUB
1aguTs

Set the sweep time to 3 seconds, and OPC? a single sweep.

48 PRINT “SWEEPING"
52 CALL IOENTER(C7164,REPLY!): GOSUB
ERRORTRAP

The program will halt until the network analyzer completes
the sweep and sends out 1.

56 PRINT “DONE"™

The modified program is stored on the Example Frograms
disk as IPGI3.BAS.

When it is run, the computer displays the sweeping message
as the analyzer executes the sweep, and the computer dis-
plays DONE when the analyzer finishes the sweep. When
DONE appears, the program can continue with a valid data
trace ensured in the analyzer. Without a single sweep, it
takes more than one sweep time to ensure good data.

Measurement Programming

The previous section of this document outlined the process
to get commands into the network analyzer. The next step is
to organize the commands into a measurement sequence. A
typical measurement sequence consists of the following
steps:

1. Prepare the instrument.

2. Calibrate the instrument.

3. Connect the device under test.
4. Make the measurement.

5. Process the data.

6. Transfer the data.

Prepare the instrument

Define the measurement by setting the basic measurement
parameters. These include all the stimulus parameters
(sweep type, span, sweep time, number of points, and RF
power level) as well as the parameter to be measured, IF
averaging, and IF bandwidth. These parameters define how
data is gathered and processed within the instrument.
Changing any parameter requires that a new sweep be
taken.

Other parameters can be set within the instrument, such as
smoothing, trace scaling, or trace math, that do not directly
affect data gathering. These functions are classified as post
processing functions: they can be changed with the instru-
ment in hold mode, and the data will correctly reflect the
new state.

The save/recall registers and the learn string are two rapid
ways of setting up an entire instrument state. The learn
string is a string summary of the instrument state that can be
read into and sent out from the computer, as shown in
Example 6A: Using the learn string.

Calibrate the instrument

Measurement calibration is normally performed once the
instrument state has been defined. Although it is not
required to make a measurement, calibration improves the
accuracy of the data.

There are several ways to calibrate the instrument. The sim-
plest way is to stop the program and have the operator
perform the calibration from the front panel. Alternatively,
the computer can be used to guide the operator through the
calibration, as shown in Examples 2A: 1-port calibration and
2B: Full 2-port calibration (HP 8753C only). Lastly, calibration
data saved from a previous calibration can be transmitted
back into the instrument, as shown in Example 6B: Reading
calibration data. This should only be done if the hardware
configuration has not changed.

Connect the device under test

The computer can be used to verify that the device is con-
nected properly and to speed up the adjustment process.
Useful functions for this purpose include limit testing, band-
width searches, and trace statistics. All device adjustments
should take place at this stage and be finished before taking
data.

Make the measurement

Once the device is connected and adjusted, measure its fre-
quency response and hold the data within the instrument so
that there is a valid trace to analyze. The single sweep com-
mand SING is designed to do this. All stimulus changes are
completed before the sweep is started, and the HP-IB hold
state is not released until the formatted trace is displayed.
When the sweep is complete, the instrument is put into hold
mode, which freezes the data inside the instrument. Because
single sweep is OPC’able, it is easy to determine when the
sweep has been completed.

The number of groups command NUMGn is similar to SING,
but it triggers n sweeps. This is useful, for example, in
making a measurement with an averaging factor n (n can
range from 1 to 999). Both SING and NUMGn commands
restart averaging. :

Process the data

With valid data to operate on, the post-processing functions
can be used. Referring ahead to the data processing chain in
Figure 1 (page 20), notice that any function that affects the
data after the error correction stage can be used. The most
useful functions are trace statistics, marker searches, elec-
trical delay offset, time domain, and gating. If a 2-port
calibration is active, then any of the four S-parameters can
be viewed without taking a new sweep.

Transfer the data
Lastly, transmit the results out of the instrument. Each data

output command is designed to ensure that transmitted data
reflects the current state of the instrument.

o The commands OUTPDATA, OUTPRAWN, and QUTPFORM
will transmit data only after all formatting functions
have completed.

The commands OUTPLIML, OUTPLIMM, and QUTPLIMF
will transmit data only after a limit test has occurred (if
limit testing is on).

¢ The command OUTPMARK will activate a marker (if one
is not already selected) and will transmit data only after
any current marker searches have completed.

« The command OUTPMSTA will transmit data only after
marker statistics for the current trace have been calcu-
lated. If the statistics function is not on, it will be turned
on to update the current values and then turned off.

« The command QUTPMWID will transmit data only after a
bandwidth search has been executed for the current
trace. If the bandwidth search function is not on, it will
be turned on to update the current values and then
turned off.

Data transfer is discussed further in Examples 3A through
3D: Transferring data.

Basic Programming Examples

Making measurements

The procedure for setting up measurements on the network analyzer via HP-IB follows the
same sequence as when the setup is performed manually. As long as the desired frequency
range, number of points, and power level are set prior to performing the calibration, there is no
required order.

Example 1: Setting up a basic measurement

The following program illustrates how to set up a basic measurement on the network analyzer.
The program will select the desired parameter, measurement format, and frequency range. Per-
forming calibrations is described in later examples.

This example program is stored on the Example Programs disk as IPG1.BAS.

10

20

30

40

S0

60

70

80

90

100

110

120

130

140

REM $INCLUDE: ‘GBSETUP’

CLS
ISCs = 7

VNA& = 716

CALL IOTIMEOUTCISC&, 101):
GOSUB ERRORTRAP

CALL TOABORTCISC&): GOSUB
ERRORTRAP

CALL IOCLEARCISC&): GOSUB
ERRORTRAP

CALL IOEQICISCa, 0): GOSUB
ERRORTRAP

A$ = "PRES; MENUOFF;*:
GOSUB 100UTS

As$ = “"CHAN1; S21; LOGM;":
GOSUB 100UTS

A$ = "CHAN2; S21; PHAS;":
GOSUB 100UTS

A$ = "DUACON;*: GOSUB
100UTS

LOCATE 1, 1: INPUT "ENTER
START FREQUENCY (MHz): *,
F.START!

LOCATE 1, 41: INPUT "“ENTER
STOP FREQUENCY (MHz): *,
F.STOP!

Call the QuickBASIC initialization file QBSETUP,
the setup program for the MS-DOS HP-IB
Command Library. This command should appear
before the body of the program whenever calls to
the HP-IB Command Library are to be made.

Clear the computer CRT.

Assign the interface select code to a variable. This
select code is set on the HP 82335A HP-IB
interface card.

Assign the address of the HP 8753C/8752A to a
variable.

Define a system time-out of 10 seconds and
perform error trapping. Time-out allows recovery
from I/0O operations that are not completed in
under 10 seconds.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer’s HP-IB interface and perform
error trapping.

Disable the End-Or-Identify mode for transferring
data and perform error trapping.

Preset the network analyzer and turn its softkey
menu off.

Make channel 1 the active channel and measure
the forward transmission parameter, displaying its
magnitude in decibels. The mnemonic for this
parameter is the same for both analyzers (521)
although it is called TRANSMISSION on the HP
8752A.

Make channel 2 the active channel and measure
the phase of the forward transmission parameter.

Display both channels simultaneously.

Position the cursor on the computer CRT at
(row,column) = (1,1), and read in a real start
frequency, F.START!.

Read in a real stop frequency, F.STOP!,

150

160

170

180

190

200

210
220
230

240
250

260

270

A$ = “STAR" +

STR$(F.START!) + “MHz;":

GOSuUB 100UTS

A$ = “STOP" +
STR$(F.STOP!) + “MHz;":
GOSUB 100UTS

AS = “AUTO;*": GOSUB
100UTS

A$ = "CHAN1; AUTO;"™:
GOSUB 100UTS

A$ = “MENUON;": GOSUB
100UTS

CALL I0LOCALCISC&): GOSUB
ERRORTRAP

END
ERRORTRAP:

1F PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

RETURN
100UTS:

CALL IODUTPUTS(VNAS, AS,
LENCA$)): GOSUB ERRORTRAP

RETURN

Running the program

1. The computer sets up a measurement of transmission log magnitude on channel 1 and trans-
mission phase on channel 2, displaying both measurements simultaneously by using the dual
channel display mode.

Set the start frequency on the network analyzer to
F.START!. In QuickBASIC, the “+" is used to
concatenate strings.

Set the stop frequency on the network analyzer to
F.STOP!.

Autoscale the network analyzer’s active channel
().

Activate and autoscale channel 1.

Turn the network analyzer’s softkey menu back
on.

Return the network analyzer to local mode and
perform error trapping.

End program execution.
Define a routine to trap errors.

Perform error trapping.

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS routine.

2. Enter any valid value in MHz when prompted for start and stop frequencies.

3. The computer will enter the specified start and stop frequencies into the network analyzer,

and they will be the frequency limits of the analyzer’s display.

10

Performing calibrations

Coordinating a measurement calibration over HP-IB follows the keystrokes required to calibrate
from the front panel in that there is a command for every step. The general key sequence is to
select the calibration, to measure the calibration standards, and then to declare the calibration
done. The actual sequence depends on the calibration kit and changes slightly for 2-port calibra-
tions*, which are divided into three calibration sub-sequences.

The calibration kit tells the network analyzer which standards to expect at each step of the cal-
ibration. The set of standards associated with a given calibration is termed a class. For example,
measuring the short during a 1-port calibration is one calibration step. All of the shorts that can
be used for this calibration step make up the class, which is called class S11B. For the 7 mm and
the 3.5 mm cal kits, class S11B has only one standard, so selecting [SHORT] automatically meas-
ures the short. For type-N cal kits, however, class S11B has two standards: male and female test
ports. Selecting [SHORTS] brings up a second menu, allowing the operator to select which stan-
dard in the class is to be measured. The sex listed refers to the test port.

To do a 1-port calibration over HP-IB using the 7 mm or 3.5 mm cal kits, sending the command
CLASS11B will automatically measure the short. For the type-N cal kit, sending CLASS11B
brings up the menu with the male and female test port options. To select one of these standards,
use either the command STANA or the command STANB. The STAN command can be appended
with the letters A through G, corresponding to the standards listed under softkeys 1 through 7,
softkey 1 being the uppermost softkey. The STAN command is always OPC’able, but a CLASS
command is OPC’able only if the class has just one standard in it, which is then automatically
measured. This is because when there is more than one standard in a class, the command that
calls the class simply brings up another menu.

Each full 2-port measurement calibration is divided into three subsequences: transmission,
reflection and isolation. Each subsequence is treated like a calibration in its own right: each must
be opened, all of its standards must be measured, and then it must be declared done. The open-
ing and closing commands for the subsequences are similar.

Transmission subsequence: TRAN and TRAD
Reflection subsequence: REFL and REFD
Isolation subsequence: 1SOL and 1SOD

*HP 8753C only.

Example 2A:

The following program illustrates ho
work analyzer over HP-IB. The progra

1-port calibration

w to perform a 1-port measurement calibration on the net-
m does the calibration using the HP 85032B 50 ohm

type-N calibration kit. It steps the operator through the calibration by giving explicit directions
on the network analyzer display and allowing the user to continue the program from the net-
work analyzer front panel. The desired instrument state should be set up before the program is

run.

This example program is stored on the Example Programs disk as IPG2A.BAS.

10
20

30

40

S0

60

70
80

20

100

110

120

130

140

150

160

170

180

190

DECLARE SUB ERRORTRAP ()

DECLARE SUB 100UTS (AS,
ADDRESS&)

DECLARE SUB WAITFORKEY
(LABELS$, VNA&, DISPLAYS&,
I1SC&)

REM $INCLUDE: ‘GBSETUP’
CLS

ISC& = 7

VNAS& = 716

DISPLAY& = 717

CALL IDTIMEOUTCISC:, 10!):

CALL ERRORTRAP

CALL I0ABORTCISC&): CALL
ERRORTRAP

CALL IOCLEARCISC&): CALL
ERRORTRAP

CALL IOEOICISC&, 0): CALL
ERRORTRAP

CALL I00UTSC*"CALKNSO;
MENUOFF; CLES; ESEG4;",
VNAZ&)

CALL IOOQUTSC"WAIT;",
VNAL)

CALL IOOUTSC™ENTO;"™,
VNAZ&)

CALL I0OUTS(*"CALIS111;",
VNA&)

CALL WAITFORKEYC"CONNECT
OPEN AT PORT 1*, VNAS&,
DISPLAY&, ISC&)

CALL I0OUTSC"CLASS11A;
0PC?; STANB;", VNA&)

CALL I0ENTERCVNASG,
REPLY!): CALL ERRORTRAP

Define a subroutine to trap errors.

Define a subroutine to send a command string
from the computer to the analyzer.

Define a subroutine to display a message on the
analyzer and wait for the operator to press a key.

Call the QuickBASIC initialization file QBSETUP.
Clear the computer CRT.

Assign the interface select code to a variable.
Assign the analyzer’s address to a variable.

Assign the analyzer’s display address to a
variable.

Define a system time-out of ten seconds and
perform error trapping.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer's HP-IB interface and perform
error trapping.

Disable the End-Or-Identify mode for transferring
data and perform error trapping.

Select the 50 ohm type-N cal kit, turn off the
softkey menu, clear the status byte, and set up the
status reporting system so that bit 6, User
Request, of the Event Status Register is summar-
ized by bit 5 of the status byte, allowing a key
press to be detected by a serial poll. For more
information about setting up status reporting
systems, refer to Example 7: Interrupt generation.

Wait for a clean sweep on the analyzer so that the
following command will have the proper effect.

Clear the analyzer’s entry area.

Open the calibration by calling the S11 1-port
calibration.

Ask for an open and wait for the operator to
connect it.

Measure the open. Identify the specific standard
(female test port) within the class using the
command STANB, indicating the option at the
second softkey from the top.

Wait for the standard to be measured.

11

12

200

210

220

230

240

250

260

270

280

290

300

310

320

330
340
350

360
370

380

390
400

410

CALL WAITFORKEY(*"CONNECT
SHORT AT PORT 1*, VNAg%,
DISPLAYS, ISC®)

CALL I00UTS(*"CLASS11B;
QPC?; STANB;", VNA%)

CALL IOENTERCVNAS,
REPLY!): CALL ERRORTRAP

CALL WAITFORKEY("™CONNECT
LOAD AT PORT 1", VNAS,
DISPLAY&, ISC&)

CALL IDOUTS("OPC?;
CLASS11C;*, VNAY)

CALL IOENTERCVNAS,
REPLY!): CALL ERRORTRAP

CALL IOOUTS("PG;"™,
DISPLAYS&)

CLS : PRINT “COMPUTING
CALIBRATION
COEFFICIENTS"

CALL I0OUTSC(*"DONE; OPC?;
SAV1;*™, VNAR)

CALL IOENTERC(VNAS,
REPLY!): CALL ERRORTRAP

CLS : PRINT "1-PORT
CALIBRATION COMPLETED.
CONNECT TEST DEVICE."

CALL IOOUTSC"MENUON;*,
VNAS&)

CALL IOLOCALCISC&): CALL
ERRORTRAP

END
SUB ERRORTRAP

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

END SUB

SUB I00UTS (A$, ADDRESS&)
STATIC

CALL IOOUTPUTS(ADDRESS%,
As$, LENCAS$)): CALL
ERRORTRAP

END SUB

SUB WAITFORKEY (LABELS,
VNA&, DISPLAYS&, ISC&)
STATIC

CLS : PRINT LABELS

Ask for a short and wait for the operator to
connect it.

Measure the short. Identify the specific standard
(female test port) within the class.

Wait for the standard to be measured.

Ask for a load and wait for the operator to connect
it.

Measure the load. There are no options within
this class, so OPC?, which always precedes the last
command, comes first.

Wait for the standard to be measured.

Clear the user graphics by removing the last
prompt.

Display program progress on the computer CRT.

Complete the calibration and save it.

Wait until the network analyzer has computed the
calibration coefficients before continuing.

Display program progress and instructions on the
computer CRT.

Turn the softkey menu back on.

Return the analyzer to local mode and perform
error trapping.

End program execution.
Define a subroutine to trap errors.

Perform error trapping.

Return from the ERRORTRAP subroutine.

Define a subroutine to send a command string
from the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS subroutine.
Define a subroutine to display a message on the

analyzer and wait for the operator to press a key.

Display instructions on the computer CRT.

420

430

440

450

460
470

480

490
500

CALL I100UTS("PG; PU; PA
390,3600; PD; LB™ +
LABELS + *; PRESS ANY KEY
WHEN READY." + CHR$(3),
DISPLAY&)

CALL IOOUTSC"ESR?;",
VNAY)

CALL IOENTERCVNAS,
ESTAT!): CALL ERRORTRAP

CALL I00UTS("ESEG4;",
VNAS&)

STATX = 0

DO UNTIL CCSTATZ MOD &4)
>31)

CALL IOSPOLL(VNA&, STATX):

CALL ERRORTRAP
LoapP
END SUB

Running the program

1. The computer assumes that the port being calibrated is a 50 ohm type-N female test port and
prompts the operator to connect each standard.

2. Connect the standards as prompted, and press any key on the front panel of the network
analyzer to continue the program and measure the standard.

3. The program will display a message when the measurement calibration is complete.

Write on the network analyzer’s display:

PG : PaGe; clears old user graphics.

PU : Pen Up; prevents anything from being
drawn.

PA : Pen At; positions the logical pen.

PD : Pen Down; enables drawing.

LB : LaBel; writes the message on the display. The
label must always be terminated by the ETX
symbol, CHR$(3).

Request the Event Status Register value from the
analyzer.

Receive the Event Status Register value from the
analyzer, thereby clearing the latched User
Request bit so that old key presses will not trigger
a measurement.

Ensure that the proper status reporting system is
still in effect.

Initialize STATX for entry into the DO UNTIL loop.

Wait for a key press to be indicated by the setting
of bit 5 of the status byte. MOD 64 removes the
effect of all higher value bits (bit 6 is equivalent to
64 in decimal), and »31 ensures that bit 5, which
is equivalent to 32 in decimal, is set.

Read in the status byte as an integer.

Return from the WAITFORKEY subroutine.

13

14

Example 2B: Full 2-port calibration (HP 8753C only)

The following program illustrates how to perform a full 2-port measurement calibration on the
network analyzer over HP-IB. The program does the calibration using the HP 85032B calibra-
tion kit. It steps the operator through the calibration by giving explicit directions on the network
analyzer display and allowing the user to continue the program from the network analyzer front
panel. The desired instrument state should be set up before the program is run. The main dif-
ference between this example and Example 2A is that in this case the calibration process allows
removal of both the forward and reverse error terms. This permits measurement of all four
S-parameters of the device under test. Port 1 is a female test port and port 2 is a male test port.

This example program is stored on the Example Programs disk as IPG2B.BAS.

10
20

30

40

S0

60

70
80

90

100

110

120

130

140

150

160

170

180

190

DECLARE SUB ERRORTRAP ()

DECLARE SUB 100UTS (AS$,
ADDRESS4)

DECLARE SUB WAITFORKEY
(LABELS$, VNA&, DISPLAYS,
ISC&)

REM $INCLUDE: ‘QBSETUP”
CLS

ISC& = 7

VNAS& = 716

DISPLAY& = 717

CALL IOTIMEOUTCISC&, 10!):

CALL ERRORTRAP

CALL IOABORTCISC&): CALL
ERRORTRAP

CALL IOCLEARCISC&): CALL
ERRORTRAP

CALL IOEOICISCS, 0): CALL
ERRORTRAP

CALL IOOUTSC"CALKNS0;
MENUOFF; CLES; ESE64;",
VNAZ)

CALL IOOUTS("™CALIFUL2;",
VNAS)

CALL IOOUTSC"“REFL;"™,
VNAZ)

CALL WAITFORKEY(*"CONNECT
OPEN AT PORT 1", VNAS,
DISPLAY&, ISC&)

CALL IOOUTS("CLASS11A;
OPC?; STANB;"™, VNA&)

CALL IDENTER(CVNASL,
REPLY!): CALL ERRORTRAP

CALL WAITFORKEYC(™CONNECT
SHORT AT PORT 1", VNAg%,
DISPLAYS, ISC&)

Define a subroutine to trap errors.

Define a subroutine to send a command string
from the computer to the analyzer.

Define a subroutine to display a message on the
analyzer and wait for the operator to press a key.

Call the QuickBASIC initialization file GBSETUP.
Clear the computer CRT.

Assign the interface select code to a variable.
Assign the analyzer’s address to a variable.

Assign the analyzer’s display address to a
variable.

Define a system time-out of ten seconds and
perform error trapping.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer’s HP-IB interface and perform
error trapping.

Disable the End-Or-Identify mode for transferring
data and perform error trapping.

Select the 50 ohm type-N cal kit, turn off the soft-
key menu, clear the status byte, and set up the
status reporting system so that bit 6, User
Request, of the Event Status Register is summar-
ized by bit 5 of the status byte, allowing a key
press to be detected by a serial poll.

Open the calibration by calling for a full two-port
calibration.

Open the reflection calibration subsequence.

Ask for an open at port 1 and wait for the operator
to connect it.

Measure the open. Identify the specific standard
(female test port) within the class using the
command STANB, indicating the option at the
second softkey from the top.

Wait for the standard to be measured.

Ask for a short at port 1 and wait for the operator
to connect it

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

CALL I0OUTSC("CLASS11B;
QPC?; STANB;", VNA&)

CALL IDENTERCVNAS,
REPLY!): CALL ERRORTRAP

CALL WAITFORKEY(*CONNECT
LOAD AT PORT 1", VNAS,
DISPLAY&, 1SC&)

CALL 100UTS("0OPC?;
CLASS11C;*", VNAS)

CALL TOENTERCVNAS&,
REPLY1): CALL ERRORTRAP

CALL WAITFORKEY("CONNECT
OPEN AT PORT 2%, VNAg&,
DISPLAYS, ISC&)

CALL 100UTS("CLASS22A;
OPC?; STANA;", VNAX)

CALL IOENTER(VNAG,
REPLY!): CALL ERRORTRAP

CALL WAITFORKEY(*"CONNECT
SHORT AT PORT 2*, VNAS,
DISPLAY&, ISC&)

CALL I00UTS("CLASS22B;
OPC?; STANA;", VNAR)

CALL IOENTER(VNA%,
REPLY!): CALL ERRORTRAP

CALL WAITFORKEY("CONNECT
LOAD AT PORT 2", VNA&,
DISPLAY&, ISC&)

CALL I00UTSC"OPC?;
CLASS22C;", VNAS)

CALL IOENTERCVNAS,
REPLY!): CALL ERRORTRAP

CALL 100UTSC"OPC?;
REFD;*", VNA&)

CLS : PRINT "COMPUTING
REFLECTION CALIBRATION
COEFFICIENTS"™

CALL IDENTERCVNAL,
REPLY!): CALL ERRORTRAP

CALL IOOUTSC"TRAN;"™,
VNA&)

CLS : PRINT "OPENING

TRANSMISSION CALIBRATION

SUBSEQUENCE"™

CALL WAITFORKEY("CONNECT
THRU (PORT 1 TO PORT 2)>*%,
VNA&, DISPLAY&, ISC&)

CLS : PRINT "MEASURING
FORWARD TRANSMISSION"

Measure the short. Identify the specific standard
(female test port) within the class.

Wait for the standard to be measured.

Ask for a load at port 1 and wait for the operator
to connect it.

Measure the load. There are no options within
this class, so O0PC?, which always precedes the last
command, comes first.

Wait for the standard to be measured.

Ask for an open at port 2 and wait for the operator
to connect it.

Measure the open. Identify the specific standard
(male test port) within the class using the
command STANA, indicating the option at the first
softkey from the top.

Wait for the standard to be measured.

Ask for a short at port 2 and wait for the operator
to connect it.

Measure the short. Identify the specific standard
(male test port) within the class.

Wait for the standard to be measured.

Ask for a load at port 2 and wait for the operator
to connect it.

Measure the load, noting that there are no options
within this class.
Wait for the standard to be measured.

Close the reflection calibration subsequence.

Display program progress on the computer CRT.

Wait for the analyzer to finish calculating the
reflection calibration coefficients before
continuing.

Open the transmission calibration subsequence.

Display program progress on the computer CRT.
Ask for a thru and wait for the operator to connect
it.

Display program progress on the computer CRT.

15

16

410

420

430

440

450

460

470

480

490

500

510

520

530

540
550

560

570

580

590

600

610

620

630
640

650

660

CALL 100UTSC"QPC?;
FWDT;", VNA&)

CALL IOENTERCVNAS,
REPLY!): CALL ERRORTRAP

CALL I00UTS(C"OPC?;
FWDM;*, VNAL)

CALL IOENTER(VNAS,
REPLY!): CALL ERRORTRAP

CLS : PRINT "MEASURING
REVERSE TRANSMISSION®"

CALL 100UTS(*"OPC?;
REVT;*, VNA&)

CALL I0ENTER(VNASL,
REPLY!): CALL ERRORTRAP

CALL 100UTS(C*"QPC?;
REVM;*, VNAR)

CALL IODENTER(VNAS,
Reply!): CALL ERRORTRAP

CALL IOQUTSC'"TRAD;"™,
VNAR)

CLS : INPUT *SKIP
ISOLATION CALIBRATION?
CY/N) **, ANSWERS

IF CCANSWERS = "Y™) OR
(ANSWERS = "y*)) THEN

CALL 100UTSC™OMII ",
VNA&)

ELSE

CALL WAITFORKEY(*"ISOLATE
TEST PORTS"™, VNAsg,
DISPLAY&, ISC%)

CALL I0OUTSC*"ISOL;
AVERFACT10; AVERON;",
VNAS)

CLS : PRINT “"MEASURING
REVERSE ISOLATION"

CALL I0QUTS("QPC?;
REVI;", VNAS)

CALL ITOENTERC(VNAS,
REPLY!): CALL ERRORTRAP

CLS : PRINT "MEASURING
FORWARD ISOLATION®"

CALL I00UTS(*"0aPC?;
FWDI;*", VNAR)

CALL IOENTER(VNAS,
REPLY!): CALL ERRORTRAP

END IF

CALL I0OUTSC"ISOD;
AVEROFF;", VNA&)

CALL I00UTSC*"PG;",
DISPLAY&)

CLS : PRINT "COMPUTING
CALIBRATION
COEFFICIENTS"

Measure forward transmission.

Wait for the standard to be measured.

Measure forward load match.

Wait for the standard to be measured.

Display program progress on the computer CRT.
Measure reverse transmission.

Wait for the standard to be measured.

Measure reverse load match.

Wait for the standard to be measured.

Close the transmission calibration subsequence.

Ask the operator if the isolation part of the
calibration is to be skipped.

Skip the isolation part of the calibration.
Tell the analyzer to omit the isolation part of the
calibration.

Do the isolation part of the calibration.
Ask the operator to isolate the test ports.

Open the isolation calibration subsequence. Turn
averaging on with an averaging factor of ten.

Display program progress on the computer CRT.
Measure reverse isolation.

Wait for the standard to be measured.

Display program progress on the computer CRT.
Measure forward isolation.

Wait for the standard to be measured.

Close the isolation calibration subsequence. Turn
off averaging.

Ensure that the user graphics are cleared by
removing the last prompt.

Display program progress on the computer CRT.

670

680

690

700

710

720
730
740

750
760

770

780
790

800
810

820

830

840

850

860

870
880

CALL I00UTSC"™DONE; OPC?;
SAV2;", VNAS)

CALL IOENTERCVNASG,
REPLY!): CALL ERRORTRAP

CLS : PRINT "“FULL 2-PORT
CALIBRATION COMPLETED.
CONNECT TEST DEVICE.";

CALL IDOUTSC("™MENUON;",
VNA &)

CALL IOLOCALCISC&): CALL
ERRORTRAP

END
SUB ERRORTRAP

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

END SUB

SUB 100UTS (A$, ADDRESS?)
STATIC

CALL IDOUTPUTSCADDRESSS,
As$, LENCAS$)): CALL
ERRORTRAP

END SUB

SUB WAITFORKEY (LABELS,
VNA&, DISPLAY:, ISCe)
STATIC

CLS : PRINT LABELS

CALL I0OUTSC'"PG; PU; PA
390,3600; PD; LB"™ +
LABELS$ + *; PRESS ANY KEY
WHEN READY." + CHR$(3),
DISPLAY&)

CALL IDOUTSC"™ENTO;*™,
VNAS)

CALL IOCLEARCVNAS): CALL
ERRORTRAP

CALL IOOUTSC"ESR?;",
VNAZ&)

CALL IOENTER(VNASL,
ESTAT!): CALL ERRORTRAP

CALL I0OOUTSC("ESEG4;",
VNAS)

STATX = 0

DO UNTIL CC(STATX MOD 64)
>»31)

Affirm the completion of the calibration and save
it.

Wait until the network analyzer has computed the
calibration coefficients before continuing.

Display program progress and instructions on the
computer CRT.

Turn the softkey menu back on.

Return the analyzer to local mode and perform
error trapping.

End program execution.
Define a subroutine to trap errors.

Perform error trapping.

Return from the ERRORTRAP subroutine.

Define a subroutine to send a command string
from the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS subroutine.

Define a subroutine to display a message on the
analyzer and wait for the operator to press a key.

Display instructions on the computer CRT.

Write on the network analyzer’s display:

PG : PaGe; clears old user graphics.

PU : Pen Up; prevents anything from being
drawn,

PA : Pen At; positions the logical pen.

PD : Pen Down; enables drawing.

LB : LaBel; writes the message on the display. The
label must always be terminated by the ETX
symbol, CHR$(3).

Clear the analyzer’s entry area.

Clear the analyzer’s HP-IB interface and perform
error trapping.

Request the Event Status Register value from the
analyzer.

Receive the Event Status Register from the
analyzer, thereby clearing the latched User
Request bit so that old key presses will not trigger
a measurement.

Ensure that the proper status reporting system is
still in effect.

Initialize STATZ for entry into the DO UNTIL loop.

Wait for a key press to be indicated by the setting
of bit 5 of the status byte. MOD 64 removes the
effect of all higher value bits (bit 6 is equivalent to
64 in decimal), and »31 ensures that bit 5, which
is equivalent to 32 in decimal, is set.

17

18

890 CALL IOSPOLLC(VNA&, STATZ): Read in the status byte as an integer.
CALL ERRORTRAP

900 LOOP

910 CALL I10QUTS("“PG;"™, Clear the user graphics on the analyzer.
DISPLAY&)

920 END SUB Return from the WAITFORKEY subroutine.

Running the program

1. The computer assumes that the test ports being calibrated are 50 ohm type-N, port 1 being a
female test port and port 2 being a male test port. Prompts to connect each standard appear
just above the message line on the HP 8753C display.

2. Connect the standards as prompted, and press any key on the front panel of the network
analyzer to continue the program and measure the standard. When the option of omitting the
isolation calibration is given, press “Y” or “N” on the computer keyboard. If the isolation cal
is performed, averaging is automatically employed to ensure a good calibration.

3. The program will display a message when the measurement calibration is complete.

Transferring data

Trace information can be read out of the analyzer in two ways. First, trace data can be read
selectively using markers. This is preferable if only specific information is needed. Secondly, the
entire trace can be read out. This is only necessary if all the trace data is needed. The process of
transferring data can be divided into the following three steps:

1. Set up the receiving array. Trace data is represented inside the network analyzer as a real/
imaginary component pair for each point. The receiving array for marker data must store
three values: this real /imaginary component pair as well as a stimulus value. See Table 1 to
identify the first two values according to the current display format and marker mode. The
receiving array for reading in an entire trace must be two components wide and the number
of points long in order to accommodate all of the trace data. Since QuickBASIC stores data by
column and therefore fills the first array dimension first, make the first dimension of the
receiving array correspond to the number of elements per point (e.g. 2) and the second
dimension correspond to the number of points (e.g. 201). In addition, because a four-byte
header is sent out before the trace data when reading in an entire trace in all formats except
form 4, at least one extra real number or two extra integers must be allocated at the beginning
of the receiving array in order to maintain data order. Although this four-byte header can be
read in as one real number or as two integers, the four bytes are actually meant to be two
ASCII characters and one integer. The first two bytes are the ASCII characters “#A” that
indicate that a fixed length block transfer follows. The last two bytes form an integer con-
taining the number of bytes in the block to follow.

2. Request the data from the network analyzer. For marker data, this is always done by the
command OQUTPMARK. For an entire trace, the desired data format and level must be spec-
ified. The analyzer can transmit data over HP-IB in five different formats, three of which
are shown in the following example programs. The level of the data is determined by the
OUTPxxxx command used. (See Figure 1.) The different data levels are as follows:

« Raw data is the basic measurement data. It reflects the stimulus parameters, IF averag-
ing, and IF bandwidth, and is read out with the four QUTPRAWx commands. Normally,
only OUTPRAW1 is available, and it sends out the current active parameter; however, if a
full 2-port measurement calibration is on, all four QUTPRAWx commands are available.
The four arrays correspond to S11, S21, S12, and S22, respectively, and the data is in
real /imaginary component pairs.

« Error-corrected data is the raw data with error correction applied. This data is read out
with the command OUTPDATA, which reads active trace data, or the command
OUTPMEMO, which reads the error corrected trace memory, if available. The data is for
the current active parameter and is in real /imaginary component pairs. Neither raw
nor error-corrected data reflect such post-processing functions as electrical delay offset,
trace math, or time domain gating.

« Formatted data, read out by the command OUTPFORM, is the data being displayed by
the analyzer and reflects all post-processing functions. See Table 1 to identify the array
values according to the current display format and marker mode.

+ Calibration coefficient data is the error correction arrays resulting from a calibration.
Each array corresponds to a specific error term in the error model, and the data is
stored as real/imaginary component pairs. The HP-IB Quick Reference details which
error coefficients are used for specific calibration types and which arrays those coeffi-
cients are to be found in. Not all calibration types use all twelve arrays.

Because formatted data is seen on the analyzer display, it is generally the most useful. How-
ever, if post-processing is not necessary, as may be the case with smoothing, error-corrected
data is more desirable.

19

20

OUTPCALC
= One chain per channet

Input Error
[} Error
Input Raw

y Corrected | T

L 4 <>

OUTPRAW OUTPDATA
Phase Electrical Parameter Time
ﬁ Oftset)1 ’_(Delay h ’_(Conversion)1 | l Domain I I | l Smoothing]1
Format
Data Data

L 4
DUTPFORM
Accessible Process
Array Function

Figure 1. Data processing chain

3. Set all receiving parameters, and receive the data into the array. The receiving parameters
and the type of data read in depend on which I/O routine will be used to receive the
array. The three parameters in the computer that it may be necessary to initialize are as
follows:

* MAXX: the maximum number of items to be read. This includes the data and the header
for all data formats except form 4. See Table 2 to determine whether MAX¥ is to specify a
number of real numbers or a number of bytes according to the entering I/O routine used.

* ACTUALX: the actual number of items read. This is set by the I/O routine and should be
initialized to zero.

* FLAGZ: the code set to indicate how transferred bytes are to be placed into memory.
For example, FLAGZ = 1 means that bytes will be put into consecutive memory loca-
tions; FLAGZ = 4 means that every four bytes will be reversed in memory. See Table 2
to identify the entering I/O routines that use FLAGX as a parameter.

In general, the entering I/O routine must be sent a segment address indicating the place in
memory to start storing data. If there is a four-byte header to be read in, this address should
be one real number or two integers (four bytes) before the desired destination of the true
data. For example, an array to hold the data for a 201-point trace with two real numbers per
point might be allocated as DAT!(1 TO 2, 1 TO 201). In order to account for the header, it
should instead be dimensioned as DAT!(1 TO 2, 0 TO 201), which will add two real num-
bers to the beginning of the array. Since only one of these is needed to store the four-byte
header, the starting address specified in the entering I/O routine should only include one of
them in the array: SEG DAT!(2, 0). The result of this is that DAT!1(1, 0) will be empty,
DATI(2, 0) will store the header, and DAT! €1, 1) will store the first real number of the
data. See Table 2 for a summary of all entering I/O routines. For more information, refer to
the HP-IB Command Library Manual.

Table1. LUnits as a Function of Display Format
DISPLAY MARKER OUTPMARK OUTPFORM MARKET READOUT**
FORMAT MODE value 1, value 2 value 1, value 2 value, aux value
LOG MAG dB* dB,* dB,*
PHASE degrees,* degrees,* degrees,*
DELAY seconds,* seconds,* seconds,”*
SMITH LIN MKR lin mag, degrees | real, imag lin mag, degrees
CHART LOG MKR dB, degrees ” dB, degrees
Re/Im real, imag ’ real, imag
R+ X real, imag ohms “ real, imag ohms
G+ iB real, imag ” real, imag Siemens
Siemens
POLAR LIN MKR lin mag, degrees | real, imag lin mag, degrees
LOG MKR dB, degrees “ dB, degrees
Re/Im real, imag “ real, imag
LIN MAG lin mag,* lin mag,* lin mag,*
REAL real,” real,* real,*
SWR SWR,* SWR,* SWR,*

* Value not significant in this format, but is included in data transfers.

% The marker readout values are the marker values displayed in the upper right-hand corner of the display.

They also correspond to the value and aux value associated with the fixed marker.

Table 2. Entering 10 Routine Summary

ROUTINE DATA TYPE MAX% FLAG %
IOENTER one real — no
IOENTERA array of reals number of reals no
IOENTERAB unformatted number of bytes* yes
IOENTERB unformatted number of bytes yes
IONETERS character string number of characters no

-

IOENTERAB will only read out as many bytes as
number of bytes in the block to follow). However,
minate once MAX% bytes have been read out (MAX% is use
anticipated data from over-running the data array).

are indicated by the last two bytes of the header (the
if MAX% is less than this number, the transfer will ter-
d as a safeguard to prevent longer-than-

21

22

Example 3A: Data transfer using form 4, ASCII transfer format

The following program illustrates how to transfer data using form 4. Form 4 transfers two num-
bers for each trace point, each number of the transfer data as a 24-character string, each char-
acter being a digit, sign, or decimal point. Form 4 does not use a header. The first of two eleven-
point transfers uses QUTPFORM to read out magnitude data. This eleven-point transfer with two

real numbers per point and 24 bytes per point takes 528 (11*2*24) bytes. The second transfer
uses OUTPL IML to read out limit data. (OUTPL IML reads out the stimulus frequency, result,
upper limit, and lower limit of limit data.) Note that stimulus values can be read using this com-
mand even though no limits have been set. This eleven-point transfer with four real numbers
per point and 24 bytes per point takes 1056 (11*4*24) bytes.

This example program is stored on the Example Programs disk as IPG3A.BAS.

10 REM $INCLUDE: ‘GBSETUP’ Call the QuickBASIC initialization file GBSETUP.
20 CLS Clear the computer CRT.
30 ISCe& =7 Assign the interface select code to a variable.
40 VNA& = 716 Assign the analyzer’s address to a variable.
50 CONST SIZEX = 11 Set a constant to the number of points to be used
in the trace.
60 CALL IOTIMEOUTCISC&, 10'): Define a system time-out of ten seconds and
GOSUB ERRORTRAP perform error trapping.
70 CALL ICABORT(ISC&): GOSUB Abort any HP-IB transfers and perform error
ERRORTRAP trapping.
80 CALL IOCLEARCISC&): GOSUB Clear the analyzer’s HP-IB interface and perform
ERRORTRAP error trapping.
90 CALL I0EOICISC&, 0): GOSUB Disable the End-Or-Identify mode for transferring
ERRORTRAP data and perform error trapping.
100 A$ = "PRES;*": GOSUB Preset the network analyzer.
100UTS
110 DIMDAT!C(tTO 2, 1.TO Prepare arrays to receive the data. All IOENTER
SIZEZ), STIM!(1 704, 170 routines that fill arrays do so column by column.
SIZEX) For example DAT! will be filled in the order
DAT!(1,1),DAT!(2,1),DAT!(1,2), etc. Noting
this, dimension the array such that the data will
be properly grouped.
120 A$ = “POIN " + STR$(SIZEXZ) Set the number of points in the trace to SIZEX,
+ . SING; FORM4; sweep once, and then hold. Tell the analyzer to
OUTPFORM;*™: GOSUB 100UTS send out formatted data in form 4, the ASCII
transfer format.
130 MAXX =2 * SIZEX The maximum number of real numbers to be read
in is two per point with SIZE% points.
140 ACTUALX = 0 Initialize the actual number of real numbers read
in. This variable is given a value by 10ENTERA.
150 CALL IDENTERA(VNAS&, SEG Read the trace data into the array. The first field is
DAT!(1, 1), MAXX, ACTUALX): the magnitude in dB.
GOSUB ERRORTRAP
160 A$ = "QUTPLIML;*": GOSUB Tell the analyzer to send out the limit test data for
100UTS each point.
170 MAXX = 4 * SIZEX The maximum number of real numbers to be read
in during the next transfer is four per point with
SIZE% points.
180 ACTUALX =0 Re-initialize the actual number of real numbers

read in.

190

200

210

220

239

240

250

260
270

280
290
300

310
320

330

340

CALL IOENTERACVNA&, SEG
STIMICY, 1), MAXX,
ACTUALZX): GOSUB ERRORTRAP

PRINT TAB(S5); "#%;
TAB(13); "MAGNITUDE";
TAB(27); “FREQUENCY"™

PRINT TABC15); " (dB)";
TABC29); "(Hz)": PRINT

FOR I% = 1 TO SIZEX

PRINT USING *t####8%; 1X;

PRINT * *; : PRINT USING
wesss #800# DATI (1, 12D

PRINT * *; : PRINT USING
nwes #e" NN STIMICT, XD

NEXT 1%

CALL IOLDCALCISC&): GOSUB
ERRORTRAP

END
ERRORTRAP:

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

RETURN
100UTS:

CALL IDOUTPUTS(VNAS&, AS,
LENCAS$)) : GOSUB ERRORTRAP

RETURN

Running the program
1. The computer presets the analyzer and resets the trace to eleven points.

Read the trace data into the array. The first field is
the frequency in Hz.

Display the table heading.

Display the data for each trace pointin a table on
the computer CRT.

Display the trace point index in the desired
format. For an explanation of QuickBASIC format
statements, see the section entitled Formatting
Numbers in Microsoft QuickBASIC: Basic Language
Reference.

Display the trace point magnitude in the desired
format.

Display the trace point frequency in the desired
format.

Return the network analyzer to local mode and
perform error trapping.

End program execution.

Define a routine to trap errors.

~ Perform error trapping.

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS routine.

2. The computer reads in the trace data requested by OUTPFORM. The first number for each
point is the magnitude in dB. Regardless of the number of significant digits transmitted, the
network analyzer only measures magnitude to a resolution of 0.001 dB, phase to 0.01

degrees, and group delay to 0.01 psec.

3. The computer reads in the trace data read out by QUTPLIML. The first number for each point
is the frequency in Hz.

4. The computer displays the magnitude and frequency at the eleven points of the trace in a
table.

23

24

Example 3B: Data transfer using form 5, PC-DOS 32-bit
floating point format

The following program illustrates how to transfer data using form 5. Form 5 transfers two num-
bers for each trace point, each number as a four-byte real number, and it uses a header, so the
receiving array DAT! is set up to accommodate it. One 201-point transfer is done using
OUTPFORM to read out magnitude data. This 201-point transfer with two real numbers per point
and four bytes per point plus a four-byte header takes 1612 (201*2*4 +4) bytes. Note that this
same transfer in form 4 would take 9648 (201*2*24) bytes.

This example program is stored on the Example Programs disk as [IPG3B.BAS.

10
20
30
40
S0

60

70

80

90

100

110

120

130
140

150

160

170

180
190
200

210
220

REM $INCLUDE: ‘GBSETUP’
CLS

ISCs = 7

VNA& = 716

CALL IOTIMEOUTCISCS, 10!):
GOSUB ERRORTRAP

CALL IDABORT(ISC&): GOSUB
ERRORTRAP

CALL IOCLEARCISC&): GOSUB
ERRORTRAP

CALL IOEOICISC&, 0): GOSUB
ERRORTRAP

DIMDAT!(1TO 2, 0 TO 201)

A$ = “SING; FORMS;
OUTPFORM;*: GOSUB I00UTS

MAXZ =201 *4*2+ 4

ACTUALZ = 0

FLAGX = 1

CALL TOENTERB(VNA&, SEG
DAT!(2, 0), MAXZ, ACTUALZ,
FLAGX): GOSUB ERRORTRAP

PRINT USING **+### . #####" ;
DAT!(C1, 1); DATIC1, 201)

As$ = "CONT;": GOSUB
100UTS

CALL IOLOCALCISC&): GOSUB
ERRORTRAP

END
ERRORTRAP:

IF PCIB.ERR ¢> NOERR THEN
ERROR PCIB.BASERR

RETURN
100UTS:

Call the QuickBASIC initialization file @BSETUP.
Clear the computer CRT.

Assign the interface select code to a variable.
Assign the analyzer’s address to a variable.

Define a system time-out of ten seconds and
perform error trapping.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer’s HP-IB interface and perform
error trapping.

Disable the End-Or-Identify mode for transferring
data and perform error trapping.

Prepare an array to receive the data, leaving at
least four bytes of space before the desired data
destination to account for the two-integer header.

Sweep once and then hold. Tell the analyzer to
send out formatted data in form 5, PC-DOS 32-bit
floating point.

The maximum number of bytes to be read in is
two 4-byte real numbers per point with 201 points
plus a four-byte (two-integer) header.

Initialize the actual number of bytes read in. This
variable is given a value by IOENTERB.
No swapping of bytes is desired.

Read in the data, specifying the beginning array
address as one real number (four bytes) before the
desired destination of the true data in order to
account for the header and therefore maintain
data grouping.

Display the first and last data point values. Only
the first value of the pair of numbers for each
point (the magnitude in dB) is significant.

Restore continuous sweep trigger mode to the
analyzer.

Return the network analyzer to local mode and
perform error trapping.

End program execution.
Define a routine to trap errors.

Perform error trapping.

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

230 CALL IOOUTPUTS(VNAL, AS,
LENCAS$)): GOSUB ERRORTRAP

240 RETURN

Running the program

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the I10QUTS routine.

1. The computer reads in the trace data requested by OUTPFORM in form 5. The first number for

each point is the magnitude in dB.

2. The computer displays the first and last magnitude values read in.

Now go to the analyzer and press [MENU] [NUMBER OF POINTS] [4] [0] [1] [x1}. Run the
program again. Note that although the program does not generate an error, only half of the
data was read in since the computer only expected the data for 201 points. In this case the

analyzer is still waiting to transfer data.

Now change the number of points to 101. Run the program again. Note that a QuickBASIC
error was generated since the analyzer ran out of data to transmit before the computer
received the data from 201 points that it was expecting.

It is imperative that the receiving array be correctly dimensioned. Fortunately, this is easy to
ensure because not only is the number of points in the analyzer’s trace readily available
through POIN?, but the size of the transfer block is also easily determined from the header.
In addition, QuickBASIC allows dimension statements anywhere in a program, so it is possi-
ble to wait until the size of the transfer is known to dimension the receiving array.

The above example program can be modified to take advantage of this by making the following

changes:
+ Change line 90 to the following;:

90 DIM HEADERXCO TO 1)

¢ Delete line 110.

Prepare an array to receive the two-integer
header.

+ Insert the following lines between lines 100 and 120:

102 MAXX = 4

105 ACTUALX =0

108 FLAGX = 1

110 CALL I0ENTERB(VNA&, SEG
HEADERZ(0), MAXZ,
ACTUALZ, FLAGX): GOSUB
ERRORTRAP

112 DIMDATI(1TO 2, 0 TO
HEADERZ(1) / 8)

115 AS$ = “DUTPFORM;™: GOSUB
100QUTS

118 MAXX = HEADERZ(1) + 4

The maximum number of bytes to be read in is
only the four byte header.

Initialize the actual number of bytes read in. This
variable is given a value by IOENTERB.
No swapping of bytes is desired.

Read in the header as two integers. The second
integer is the number of bytes of the trace data
that would follow if MAXX were not set to read in
only the header.

Prepare an array to receive the data. The
necessary size of the array can be determined
from the known number of bytes of the trace data.
(There are HEADERXC 1) bytes with four bytes per
real number and two real numbers per point.)

Tell the analyzer to send out data formatted data
in form 5, PC-DOS 32-bit floating point.

The maximum number of bytes to be read in is the
number of bytes following the header, given by
HEADERX(1), plus the four bytes in the header.

This modified program is stored on the Example Programs disk as [IPG3BX.BAS.

Two transfers are done using OUTPFORM. The first transfer reads in only the four-byte header (as
two integers) before it terminates. The second of these integers is the size in bytes of the block of
data to follow, and with this the receiving array can be correctly dimensioned regardless of the

number of points in the trace.

25

26

Example 3C: Data transfer using form 1, network analyzer

internal format

The following program illustrates how to transfer data using form 1. Form 1 transfers a six-byte
binary string of data for each trace point. The six bytes can be represented as three integers, and
form 1 uses a four-byte header, which can be read in as two integers, so the receiving array DAT!
is set up to accommodate this. One transfer is done using QUTPDATA to determine the size of the
data block. The receiving array is then correctly dimensioned, and a second transfer is done
using OUTPDATA to receive all of the trace data. If there is a 201-point trace, with six-bytes per
point plus a four-byte header, this transfer takes only 1210 (201*6 +4) bytes. This is consider-
ably faster than the same transfer in either form 4 or form 5.

However, the data received in form 1 is difficult to decode. Real /imaginary data uses the first
two bytes for the imaginary fraction mantissa, the middle two bytes for the real fraction man-
tissa, the fifth byte for additional resolution when transferring raw data, and the last byte as the
common power of two. The data could be recombined and displayed on the computer, but since
this requires reformatting time, form 1 is most useful for getting data to store on disk, as shown
in the following program.

This example program is stored on the Example Programs disk as IPG3C.BAS.

10
20
30
40
50

60

70

80

90

100

110

120

130
140

150

160

REM $INCLUDE: ‘GBSETUP’
CLS

IsC& = 7

VNA& = 716

CALL IOTIMEQUTCISC&, 10!):
GOSUB ERRORTRAP

CALL IOABORTC(CISC&): GOSUB
ERRORTRAP

CALL IOCLEARCISC&): GOSUB
ERRORTRAP

CALL IOEOICISC&, 0): GOSUB
ERRORTRAP

DIM HEADERXCO0 TO 1)

A$ = “SING; FORM1;
QUTPDATA;": GOSUB I100UTS

MAXX = 4

ACTUALX = 0

FLAGX = 4

CALL IOENTERBC(VNA&, SEG

HEADERZ(0), MAXZ, ACTUALZ,
FLAGZ): GOSUB ERRORTRAP

DIM DATZC¢1 TG 3, 0 TO
HEADERX(0) / ©6)

A$ = “OUTPDATA;™: GOSUB
100UTS

Call the QuickBASIC initialization file QBSETUP.
Clear the computer CRT.

Assign the interface select code to a variable.
Assign the analyzer’s address to a variable.

Define a system time-out of ten seconds and
perform error trapping.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer’s HP-IB interface and perform
error trapping.

Disable the End-Or-Identify mode for transferring
data and perform error trapping.

Prepare an array to receive the four-byte header
as two integers.

Sweep once and then hold. Tell the analyzer to
send out corrected data in form 1, instrument
internal binary.

The maximum number of bytes to be read in is
only the four-byte header.

Initialize the actual number of bytes read in. This
variable is given a value by IOENTERB.

Reverse every four bytes.

Read in the header as two integers. The first
integer is the number of bytes of the trace data
that would follow if MAXX were not set to read in
only the header.

Prepare an array to receive the data. The
necessary size of the array can be determined
from the known number of bytes of the trace data.
(In addition to one four-byte header, there are six
bytes per point in form 1, so allocate three integers
per point.)

Tell the analyzer to send out corrected data in
form 1, instrument internal binary.

170

180
190

200

210

220

230

240
250
260
270
280
290
300
310

320

330

340

350
360
370

380
390
400
410
420
430

440

450

460

470

MAX% = HEADERX(C0) + 4

ACTUALZ = 0
FLAGX = 1

CALL IOENTERB(VNA&, SEG
DAT%(2, 0), MAXX, ACTUALZ,
FLAGX): GOSUB ERRORTRAP

OPEN “TESTDATA"™ FOR
BINARY AS #1

PUT #1, , HEADERXC0)
PUT #1, , DAT%(2, 0)

PUT #1, , DATXZ(3, 0)

FOR 1% = 1 TO HEADERX(C0) / 6
PUT #1, , DATZC1, 1%)
PUT #1, , DATZ(2, IX)
PUT #1, , DATZ(3, I%)
NEXT IX%

CLOSE #1

PRINT “CHANGE SETUP AND
PRESS <ENTER>.™

DO UNTIL INKEY$ = CHR$(13):
Loop

OPEN "TESTDATA" FOR
BINARY AS #1

GET #1, , HEADERX(O0)

GET #1, , DATX(2, 0)
GET #1, , DATZ(3, 0)

FOR 1% = 1 TO (HEADERXZC0) /
6)

GET #1, , DATZ(1, 1X)
GET #1, , DATXC2, I%X)
GET #1, , DATX(3, I%)
NEXT I%
CLOSE #1

As$ = “"SING;*": GOSUB
1a0uTs

PRINT "PRESS <ENTER> TO
CONTINUE."™: DO UNTIL
INKEYS$ = CHR$(C13): LOOP

As$ = "INPUDATA;": GOSUB
100UTS

MAX%Z = HEADERX(C0) + 4

FLAGZ = 1

The maximum number of bytes to be read in is the
number of bytes following the header, given by
HEADERX(0), plus four bytes in the header.

Re-initialize the actual number of bytes read in.

Because the data is only going to be stored in a file
and not seen, no swapping of bytes is necessary.

Read in the data, specifying the beginning array
address as two integers (four bytes) before the
desired destination of the true data in order to
account for the header and therefore maintain
data grouping.

Open the binary storage file.

Store the number of bytes of the trace data in the
storage file.

Store the four-byte header in the storage file as
two integers.

Store the trace data in the storage file.

Close the storage file.

Display instructions on the computer CRT.
Wait for the operator to change the trace.
Open the binary storage file.

Read the number of bytes of trace data from the
storage file.

Read the header from the storage file.

Read the trace data from the storage file.

Close the storage file.

Sweep once to view the current setup’s trace on
the analyzer and then hold.

Allow the operator to view the current setup’s
trace before continuing.

Prepare the analyzer to read in corrected data.

The maximum number of bytes to be sent out is
the number of bytes following the header, given
by HEADER%(0), plus the four bytes in the header.

No swapping of bytes is desired.

27

480 CALL IOOUTPUTB(VNA&, SEG Send out the data, specifying the beginning array
DAT%C2, 0), MAXZ, FLAG%): address as two integers (four bytes) before the
GOSUB ERRORTRAP address where the true data is stored in order to

account for the header.

490 KILL "“TESTDATA" Delete the data file.

500 CALL IOLOCAL(CISCa&): GOSUB Return the network analyzer to local mode and
ERRORTRAP perform error trapping.

510 END End program execution.

520 ERRORTRAP: Define a routine to trap errors.

530 IF PCIB.ERR <> NOERR THEN Perform error trapping.

ERROR PCIB.BASERR

540 RETURN Return from the ERRORTRAP routine.

550 I100UTS: Define a routine to send a command string from

the computer to the analyzer.

560 CALL IOOUTPUTS(VNAZ, AS, Send the command string A$ out to the analyzer
LENCAS$)): GOSUB ERRORTRAP and perform error trapping.

570 RETURN Return from the 100UTS routine.

Running the program

1. The computer initiates a transfer using OUTPDATA, reads in the four-byte header as two integ-
ers, and terminates the transfer. The second of these integers is the size in bytes of the block
of data to follow, and with this, the receiving array is correctly dimensioned.

2. The computer reads in all the trace data requested by OUTPDATA.

3. The computer stores the size of the block of data and the data in the hard disk file TESTDATA.
If a hard disk is not available, change the file name on lines 210 and 330 to A: TESTDATA, and
make sure that there is a formatted non-write-protected) disk in the A: drive.

4. Change the setup on the analyzer as prompted by the computer by, for example, disconnect-
ing the test device.

5. The computer reads the trace data back in from the storage file, sends the data out to the ana-
lyzer, and deletes the storage file.

Example 3D: Data transfer using markers

The following program

illustrates how to transfer data using markers and the command

DUTPMARK. In order to read data off a trace using a marker, the marker must first be made active
and put at the desired frequency using a command to select a specific stimulus value, like MARK1
133. 15MHZ, or a command to do a marker search, like MARK3; SEAMIN. The command
OUTPMARK tells the network analyzer to transmit three numbers: marker value one, marker
value two, and marker stimulus value. See Table 1 (page 20) to identify the first two marker val-

ues according to the current display format.

The third marker value, the stimulus value, is either

frequency or time, depending on the network analyzer’s active domain. These three values can
be read in as an array of real numbers using the routine 1DENTERA. In this case, there is no
header, and MAX¥% is the maximum number of real numbers to read in (3).

This Example Program is stored on the Example Programs disk as IPG3D.BAS.

10
20
30
40
50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

REM $ INCLUDE: ‘QBSETUP’
CLS

1SC& = 7

VNA& = 716

DISPLAYS = 717

CALL IOTIMEQUTCISC&, 10!):
GOSUB ERRORTRAP

CALL 10ABORTCISCa&): GOSUB
ERRORTRAP

CALL IOCLEARCISC&): GOSUB
ERRORTRAP

CALL IDEDICISCS, 0): GOSUB
ERRORTRAP

DIM VALU'CO TO 2O

ADDRESS& = VNAY

A$ = “PRES;"™: GOSUB
100UTS

A$ = “*CHAN1; S21; LOGM;":
GOSUB 100UTS

A$ = “CENT 134MHz;":
GOSUB 100UTS

A$ = “"SPAN 25MHz;": GOSUB
100UTS

AS = “AUTO;": GOSUB
100UTS

A$ = “SING; MARK3;
SEAMIN;*: GOSUB 100UTS

A$ = "MARK4; SEAMAX;":
GOSUB 100UTS

As$ = "MARK1 133.15MHz;
QUTPMARK ;"™ : GOSUB I00UTS

Call the QuickBASIC initialization file QBSETUP.
Clear the computer CRT.

Assign the interface select code to a variable.
Assign the analyzer’s address to a variable.

Assign the analyzer’s display address to a
variable.

Define a system time-out of ten seconds and
perform error trapping.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer’s HP-IB interface and perform
error trapping.

Disable the End-Or-Identify mode for transferring
data and perform error trapping.

Allocate space to hold data read in from the
analyzer.

Initialize the output address to the address of the
network analyzer.

Preset the network analyzer.

Make channel 1 the active channel and measure
the magnitude of forward transmission parameter
521 in decibels.

Set the center frequency to 134 MHz.
Set the frequency span to 25 MHz.
Autoscale the resulting trace.

Sweep once, hold, and set marker three at the
minimum magnitude value of the trace.

Set marker four at the maximum magnitude value
of the trace.

Set marker one at 133.15 MHz, sweep once, and
request marker data from marker one. Since the
format is log magnitude, only the first value (the
magnitude at the marker in dB) and the third
value (the frequency in Hz) read in are significant.
— See Table 1.

29

30

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

MAXZ = 3

ACTUALX = 0

CALL TOENTERA(VNAS, SEG
VALU!(C0), MAXX, ACTUALZX):
GOSUB ERRORTRAP

PRINT " MARKER AT 133.15
MHz:*
PRINT " FROM LOG

MAGNITUDE PLOT:*

PRINT TABC15); VALU'(0);
" DB"

GOSUB WAITING

As$ = "PHAS; AUTO;"™: GOSUB
100UTS

A$ = "MARK1; OUTPMARK;":
GOSUB 100UTS

ACTUALX = 0

CALL IOENTERACVNA&, SEG
VALU!C0), MAXZ, ACTUALX):
GOSUB ERRORTRAP

PRINT " FROM PHASE
PLOT: "

PRINT TABC15); VALU!(0);
" DEGREES™

GOSUB WAITING

AS$ = “LINM; AUTO;"™: GOSUB
100UTs

AS$ = "MARK1; DUTPMARK;":
GOSUB 100UTS

ACTUALZ = 0

CALL IOENTERA(VNAG, SEG
VALU!C0), MAXZ, ACTUALX):
GOSUB ERRORTRAP

PRINT * FROM LINEAR
MAGNITUDE PLOT:"

PRINT TABC15); VALU!(0);
* UNITS™

GOSUB WAITING

Set the maximum number of real numbers to be
read in from the analyzer.

Initialize the actual number of real numbers read
in. This variable is given a value by 10ENTERA.

Read in marker data from the analyzer.

Display a heading.
Display the magnitude value just read in.

Wait for the user to press any network analyzer
key before continuing.

Display the phase of the active transmission
parameter and autoscale the resulting trace.

Request marker data from marker one. Since the
format is phase, only the first value (the phase at
the marker in degrees) and the third value (the
frequency in Hz) read in are significant. — See
Table 1. Note that a single sweep / hold is not
necessary here because only format has changed.

Re-initialize the actual number of real numbers
read in.

Read in marker data from the analyzer.

Display a heading.
Display the phase value just read in.

Wait for the user to press any network analyzer
key before continuing.

Display the linear magnitude of the active
transmission parameter and autoscale the
resulting trace.

Request marker data from marker one. Since the
format is linear magnitude, only the first value
(the linear magnitude) and the third value (the
frequency in Hz) read in are significant. — See
Table 1.

Re-initialize the actual number of real numbers
read in.

Read in marker data from the analyzer.

Display a heading.
Display the magnitude value just read in.

Wait for the user to press any network analyzer
key before continuing.

410

420

430

440

450

460

470

480

490

500

510

520

530

540

S50
560
570

580
590

600

610
620

630

As$ = “SMIC; AUTO;
SMIMRX;*": GOSUB 100UTS

A$ = "MARK1; OUTPMARK;":
GOSUB 100UTS

ACTUALX = 0

CALL I0ENTERACVNAS, SEG
VALU!C0), MAXX, ACTUALZX):
GOSUB ERRORTRAP

PRINT * FROM SMITH
CHART:*

PRINT TABC15); VALU!C0);
") "5 VALUTCD;
" OHMS"

GOSUB WAITING

A$ = “POLA; AUTO;
POLMRI;": GOSUB I00UTS

A$ = "MARK1; OUTPMARK;":
GOSUB 100UTS

ACTUALZ = 0

CALL I0ENTERACVNAS, SEG
VALU'C€0), MAXX, ACTUALX):
GOSUB ERRORTRAP

PRINT " FROM POLAR
PLOT:"

PRINT TABC15); VALU1C0);
"4 j 5 VALUTC1);
"UNITS™

CALL IOLOCALCISC&): GOSUB
ERRORTRAP

END
ERRORTRAP:

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

RETURN
100UTS:

CALL TOOUTPUTSC(ADDRESS4,
As$, LENCAS)): GOSUB
ERRORTRAP

RETURN
WAITING:

ADDRESS& = DISPLAY&

Display the Smith chart of the active transmission
parameter and autoscale the trace. Set the marker
data to be given in the form R + jX.

Request marker data from marker one. In this
configuration, the first value (real in ohms), the
second value (imaginary in ohms), and the third

value (the frequency in Hz) read in are significant.

— See Table 1.

Re-initialize the actual number of real numbers
read in.

Read in marker data from the analyzer.
Display a heading.

Display the normalized impedance values just
read in.

Wait for the user to press any network analyzer
key before continuing.

Display the active transmission parameter in polar

form and autoscale the trace. Set the marker data
to be in the form real /imaginary.

Request marker data from marker one. In this
configuration, the first value (real), the second
value (imaginary), and the third value (the
frequency in Hz) read in are significant. — See
Table 1.

Re-initialize the actual number of real numbers
read in.

Read in marker data from the analyzer.

Display a heading.

Display the values just read in.

Return the network analyzer to local mode and
perform error trapping.

Perform error trapping.
Define a routine to trap errors.

Perform error trapping.

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS routine.

Define a routine to display a prompt on the
network analyzer’s display and wait for the user
to press any key before continuing.

Reset the output address to the network
analyzer’s display.

31

32

640

650

660

670

680

690
700

710

720
730

740

750

760

As$ = “PU; PA 390,3600; PD;
LBPRESS ANY KEY TO
CONTINUE"™ + CHRS$(3):
GOSUB 100UTS

ADDRESS& = VNA&

A$ = "CLES; ESEG4;":
GOSUB 100UTS

As$ = “ESR?;": GOSUB
100UTS

CALL TOENTERC(VNAS,
ESTAT!): GOSUB ERRORTRAP

STATZ = 0

DO UNTIL C(C(STATZ MOD 64) >
31

CALL IOSPOLLC(VNA&, STATX):
GOSUB ERRORTRAP

Loop
ADDRESS& = DISPLAY:

A$ = "PG;": GOSUB 100UTS

ADDRESS& = VNAZR

RETURN

Running the program

1. The computer sets up a trace on the analyzer and puts markers at the maximum and mini-
mum log magnitudes of the trace as well as at a specific frequency.

Write a prompt on the network analyzer’s display.

Return the output address to the network
analyzer.

Set up the status reporting system so that bit 6,
User Request, of the Event Status Register is
summarized by bit 5 of the Status Byte, allowing a
key press to be detected by a serial poll.

Request the Event Status Register value from the
analyzer.

Receive the Event Status Register value from the
analyzer, thereby clearing the latched User
Request bit so that old key presses will not trigger
a measurement.

Initialize STATX for entry into the DO UNTIL loop.

Wait for a key press to be indicated by the setting
of bit 5 in the status byte. MOD 64 removes the
effect of all higher value bits (bit 6 is equivalent to
64 in decimal), and » 31 ensures that bit 5, which
is equivalent to 32 in decimal, is set.

Read in the status byte as an integer.

Reset the output address to the network
analyzer’s display.

Clear old user graphics from the network
analyzer’s display.

Return the output address to the network
analyzer.

Return from the WAITING routine.

2. The computer reads in the data from marker one read out by OUTPMARK. Press any key on
the analyzer front panel to continue the program, go on to a new display format, and read in
its data from marker one. Note that only the identity of the first two marker data values var-
ies with the current display format and marker mode; the command to read out the marker
data, OUTPMARK and the number of values to be read (3) is always the same.

Advanced Programming Examples

Using list frequency mode

The network analyzer normally takes data points spaced at regular intervals across the overall
frequency range of the measurement. For a 2 GHz linear frequency sweep with 201 points, data
will be taken at intervals of 10 MHz. The list frequency mode, however, lets you select the spe-
cific points or frequency spacing between points at which measurements are to be made. This
allows flexibility in setting up tests, and it reduces measurement time since device performance
is not measured at frequencies not needed.

The following examples illustrate the use of the network analyzer’s list frequency mode to per-
form arbitrary frequency testing. Example 4A constructs a table of list frequency segments which
is then loaded into the network analyzer’s list frequency table. Each segment stipulates a start
frequency, a stop frequency, and the number of data points to be taken over that frequency
range. The command sequence for entering a list frequency table imitates the key sequence fol-
lowed when entering a table from the front panel in that there is a command for every key
press. Editing a segment is also the same as the key sequence, and the network analyzer auto-
matically reorders each edited segment in order of increasing start frequency.

Example 4B selects a specific segment of the list frequency table to “zoom-in" on. This is useful
when a single instrument is being used to measure several different devices, each with its own
frequency range. Using a single calibration performed with all of the segments active, each spe-
cific device can be measured by selecting the appropriate segment for that device.

The list frequency segments can be overlapped, but the number of points in all the segments
must not exceed 1632 points. Also, the list frequency table is carried as part of the learn string.
While it cannot be modified in this form, it can easily be stored and recalled.

Example 4A: List frequency sweep

The following program illustrates how to create a list frequency table on the computer and
transmit it to the analyzer. It takes advantage of the computer’s ability to simplify creating,
adding to, and editing the table. The table is entered and completely edited before it is transmit-
ted to the analyzer. For simplicity, the options to enter center, span, and step size are not given.

This example program is stored on the Example Programs disk as IPG4A.BAS.

10 REM $INCLUDE: ‘QBSETUP’ Call the QuickBASIC initialization file QBSETUP.

20 CLS Clear the computer CRT.

30 ISCs& =7 Assign the interface select code to a variable.

40 VNAg = 716 Assign the analyzer’s address to a variable.

50 CALL IOTIMEOQOUTCISC&, 10%): Define a system time-out of ten seconds and

- GOSUB ERRORTRAP perform error trapping.

60 CALL IOABORTCISC&): GOSUB Abort any HP-IB transfers and perform error
ERRORTRAP trapping.

70 CALL IOCLEARCISC&): GOSUB Clear the analyzer’s HP-IB interface and perform
ERRORTRAP error trapping.

80 CALL IOEDICISCe, 0): GOSUB Disable the End-Or-Identify mode for transferring
ERRORTRAP data and perform error trapping.

90 LOCATE 1, 1: INPUT “NUMBER Read in the desired number of segments from the
OF SEGMENTS? ", NUMBERZ operator’s input.

100 DIM TABLE!C1 TO 3, 1T0 Create an array to hold the segment data (start
NUMBERZ%) frequency, stop frequency, and number of points
for each segment).
110 GOSUB CLEARLINES Clear the CRT lines being used for data entry.
120 LOCATE 5, 1: PRINT Display the segment table header on the computer
“SEGMENT™; TAB(15); CRT.

“START(MHz)>"; TAB(32);
“"STOP(MHz)"; TAB(49);
“NUMBER OF POINTS";

130 FOR IX = 1 TO NUMBERYX Repeat for each segment in the segment list.

34

140

150

160

170

180

190

200

210

220
230
240

250
260

270
280

290

300

310

320

330

340

350

360
3790
380

390

GOSUB LOADPOINT

GOSUB CLEARDATA

NEXT IX
GOSUB CLEARLINES

LOCATE 1, 1: INPUT *DO YOU
WANT TO EDIT C(Y/N)2 ™,
ANSWERS

DO UNTIL CCANSWERS = *"N'D
OR CANSWERS = “n"))

INPUTENTRY: LOCATE 1, 40:
INPUT “ENTRY NUMBER? ",
I

IF CCIX <1) OR CIX>
NUMBERZ)) THEN GOTO
INPUTENTRY

GOSUB LOADPOINT
GOSUB CLEARL INES

LOCATE 1, 1: INPUT "DO YOU
WANT TO EDIT CY/N)? ™,
ANSKWERS

LOOP

A$ = “EDITLIST; CLEL;"™:
GOSUB 100UTS

FOR IX = 1 TO NUMBERX

AS$ = “SADD; STAR " +
STR$CTABLE!'(C1, IX)) +
“MHz;*": GOSUB 100UTS

AS$ = “STOP ™ +
STR$(TABLE!(2, IX)) +
“"MHz;': GOSUB I00UTS

AS = "POIN " +
STR$CTABLE!(3, 1%)) +
“;": GOSUB 100UTS

A$ = “SDON;*: GOSUB
100UTS

NEXT I%

As$ = “EDITDONE;
LISFREQ;*: GOSUB 100UTS

A$ = "AUTO;"™: GOSUB
100UTS

CALL IOLOCALCISC&): GOSUB
ERRORTRAP

END
ERRORTRAP:

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

RETURN

Load the data for the current segment, TABLE ! (1
TO 3, 1%). Since LOADPOINT is a subroutine, 1% is
used as a global variable.

Clear the current segment data from the CRT lines
being used for data entry.

Clear the CRT lines being used for data entry.
Determine if editing is initially desired.

Repeat until all editing has been done.

Get the number of the segment to be edited.

Make sure the segment number is valid.

Re-enter the segment data.
Clear the CRT lines being used for data entry.
Determine if more editing is desired.

To begin sending the table to the analyzer, open
the analyzer’s list frequency table for editing, and
delete any existing segments.

Loop for each segment.

Add a segment, specifying its start frequency, its
stop frequency, and the number of points it is
made up of. Then declare the current frequency
list segment done.

Close the edit frequency list table and activate the
list frequency mode.

Autoscale the trace.

Return the network analyzer to local mode and
perform error trapping.

End program execution.
Define a routine to trap errors.

Perform error trapping.

Return from the ERRORTRAP routine.

400

410

420

430

440
450

460

470

480

430

500

510
520
S30

540

S50

560
570

580

590

600

610

620

630

100UTS:

CALL TOOUTPUTS(VNAS, AS,
LENCA$)): GOSUB ERRORTRAP

RETURN
LOADPOINT:

GOSUB CLEARLINES

LOCATE 1, 1: PRINT
“SEGMENT: "; STR$CIX);
TABC40); "STOP FREQUENCY
(MHz)?*

LOCATE 2, 1: PRINT "START
FREQUENCY (MHz)?";
TABC(40); “NUMBER OF
POINTS?"

IF (CTABLE!'C1, IX) <> 0) OR
(TABLE!' (2, I%Z) <> 0) OR
(TABLE! (3, I%) <> 0))
THEN

LOCATE 2, 23: PRINT
TABLE!C1, 1X);

LOCATE 1, 61: PRINT
TABLE! (2, IX);

LOCATE 2, 57: PRINT
TABLE!'(3, IX);

END IF
SAVE! = TABLE!'(1, IX)

LOCATE 2, 22: INPUT
TABLE! (1, IX)

IF TABLE!C1, IX) = 0 THEN
TABLE!(1, IX) = SAVE!

LOCATE 2, 23: PRINT
SPACE$(16): LOCATE 2, 23:
PRINT TABLE!(C1, 1%);

SAVE! = TABLE!(2, IX)

LOCATE 1, 60: INPUT
TABLE! (2, IX)

IF TABLE!(2, IX) = 0 THEN
TABLE!(2, IX) = SAVE!

LOCATE 1, 61: PRINT
SPACES$(19): LOCATE 1, 61:
PRINT TABLE!(2, 1%);

SAVE! = TABLE!(3, IX)
TABLE!(3, I%) =0

DO UNTIL (TABLE!(3, IX) > 0)

LOCATE 2, S6: INPUT
TABLE!(3, IX)

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS routine.

Define a routine to read in all of one segment’s
data from the operator and load it into the data
table on the computer.

Clear the CRT lines being used for data entry.

Display the input labels.

If the segment contains valid data, display it at the
entry locations.

Save the start frequency of the current table entry.

Read the start frequency of the segment.

If no value or 0 was entered, return the start
frequency to its previous value.

Display the new start frequency.

Save the stop frequency of the current table entry.
Read the stop frequency of the segment.

If no value or 0 was entered, return the stop
frequency to its previous value.

Display the new stop frequency.

Save the number of points of the current table
entry.

Set TABLE! (3, IX%) for entry into the DO UNTIL
loop.

Repeat until a valid number of points has been
entered.

Read the number of points in the segment.

35

36

640

650
660

670

680

690
700

710
720

730
740
750

760

770

IF C(CTABLE!(3, IX) = 0) AND
(SAVE! <> 0)) THEN
TABLE!'(3, 1Z) = SAVE!

LOOP

LOCATE 2, 57: PRINT
SPACE$(23): LOCATE 2, 57:
PRINT TABLE!'(3, IX);

IF (TABLEY(3, I%) = 1) THEN
TABLE!'(2, [%) = TABLE!'(1,
I%)

LOCATE IZ + 5§, 3: PRINT
1%2; TABC(17); TABLE!' (1,
1%X); TAB(34); TABLE!(2,
1%); TAB(54); TABLE'(3,
12);

RETURN
CLEARLINES:

FOR JZ = 1703

LOCATE J%, 1: PRINT
SPACE$(80);

NEXT J%
RETURN
CLEARDATA:

LOCATE 1, 61: PRINT
SPACE$(19): LOCATE 2, 23:
PRINT SPACE$C16);

RETURN

Running the program

1. The computer clears the analyzer’s list frequency table. If this is not desired, remove the CLEL
command from line 90.

If no value or 0 was entered and the previous
value was valid, return the number of points to
that previous value.

Display the new number of points.

If there is only one point in the segment, let the
stop frequency equal the start frequency to avoid
ambiguity.

Display the new data in the table.

Return from the LOADPOINT routine.

Define a routine to clear the CRT lines used for
data entry.

Clear each line.

Return from the CLEARL INES routine.

Define a routine to clear only the data (not the
prompts) from the CRT lines used for data entry.

Return from the CLEARDATA routine.

2. Enter the number of segments and then the parameters of each segment as prompted.

3. Edit the computer’s list frequency table until it is satisfactory. Pressing <ENTER> at a
prompt during editing leaves the parameter at its current value.

4. The computer sends the completed list frequency table out to the analyzer, which orders
the segments, activates the list frequency mode, and displays an all-segment sweep.

Example 4B: Single segment selection

The following program illustrates how to read the list frequency table data out of the network
analyzer and choose a single segment out of this table of segments to be the operating frequency

range of the netw
into the analyzer,

ork analyzer. It is assumed that a list frequency table has already been entered
either manually or over HP-IB as shown in the previous example.

This example program is stored on the Example Programs disk as IPG4B.BAS.

10
20
30
40
50

60

70

80

90

100

110

120

130

140

180
160
170

180

190

200

210

REM $ INCLUDE: ‘QBSETUP’
CLS

I1SC& = 7

VNA& = 716

CALL IOTIMEOUTC(ISC&, 20!):
GOSUB ERRORTRAP

CALL IDABORT(CISC&): GOSUB
ERRORTRAP

CALL IOCLEARCISC&): GOSUB
ERRORTRAP

CALL I0EOICISCa&, 0): GOSUB
ERRORTRAP

LOCATE 2, 1: PRINT TAB(4);
“SEGMENT"; TAB(22);
“START (MHz)*"; TAB(42);
“STOP (MHz)"; TAB(59);
“NUMBER OF POINTS"

A$ = "EDITLIST; SEDI30;
SEDI?": GOSUB 100UTS

CALL TOENTERCVNA%,
NUMSEGS!): GOSUB ERRORTRAP

NUMSEGSZ = INT(NUMSEGS!)

DIM TABLE!(1 TO 3, 1 TO
NUMSEGSZ)

FOR I% = 1 TO NUMSEGSX

GOSUB READLIST
NEXT IZ

LOCATE 1, 1: INPUT "“SELECT
SEGMENT NUMBER (0 TO
EXIT): *, SEGMENTX

DO UNTIL (SEGMENTX = 0)

LOCATE 3, 1: PRINT
SPACES$(80);

IF (C(NUMSEGSZ > 20) AND
(SEGMENTZ < 21)) THEN

LOCATE 3, 1: PRINT USING
"##; TAB(G); SEGMENTXZ;

Call the QuickBASIC initialization file GBSETUP.
Clear the computer CRT.

Assign the interface select code to a variable.
Assign the analyzer’s address to a variable.

Define a system time-out of twenty seconds and
perform error trapping. This time-out is longer
than usual because when there are many points,
the HP 8752A factory correction takes more than
10 seconds to adjust to a new frequency range. If
the timeout is set to only 10 seconds, a time-out
error may be generated when nothing is wrong.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer's HP-IB interface and perform
error trapping.

Disable the End-Or-Identify mode for transferring
data and perform error trapping.

Display the table heading.

Request segment 30, the largest possible segment
number, and the analyzer will automatically select
the last segment. Then output its number to the
computer.

Because there in no HP-IB Command Library
routine to read in an integer, read the last segment
number into the real variable NUMSEGS! .

Convert the number of segments to an integer.

Create an array to hold all of the segment
parameters.

Read the segment parameters from the analyzer
for each segment.

Determine which segment the operator wishes to
activate. Entering 0 exits the loop.

Repeat until the operator enters 0.

Clear the current segment display line on the
computer CRT.

Display the desired segment’s data at the top of
the table if it is not already on the display screen.

37

38

220

230

240

250

260

270

280

290

300

310

320

330
340
350

360
370

380

330
400

410

420

430

440

450

PRINT USING "‘##### . ##%
TAB(23); TABLE!' (1,
SEGMENTX) /7 1000000
TAB(42); TABLE! (2,
SEGMENTXZ) 7/ 1000000

PRINT USING “‘####" ;
TAB(65); TABLE!(3,
SEGMENTX)

END IF

As$ = "EDITDONE; SSEG" +
STR$(SEGMENTX) + ";*:
GOSUB 100UTS

A$ = "AUTO;*": GOSUB
100UTS

LAGCATE 1, 36: PRINT
SPACES$(C10);

LOCATE 1, 1: INPUT “SELECT
SEGMENT NUMBER (0 TO
EXIT): *, SEGMENTX

Loop

A$ = “"ASEG;*": GOSUB
100UTS

A$ = "AUTO;": GOSUB
100UTS

CALL I10LOCALCISC&): GOSUB
ERRORTRAP

END
ERRORTRAP:

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

RETURN
I100UTS:

CALL IOOUTPUTS(VNAS, AS,
LENCAS$)): GOSUB ERRORTRAP

RETURN
READLIST:

A$ = "EDITLIST; SEDI"™ +
STR$CIX) + *;": GOSUB
100UTS

A$ = “STAR?;": GOSUB
100UTS

CALL IOENTERCVNAS,
TABLE! (1, 1%)): GOSUB
ERRORTRAP

A$ = "“STOP?;": GOSUB
100UTS

CALL IOENTER(VNAS,
TABLE!'(2, I%)): GOSUB
ERRORTRAP

Make the desired segment the new operating
frequency range of the measurement.

Autoscale the trace.
Clear the segment number entry display.

Determine which segment the operator wishes to
activate.

Resume operation using all list frequency
segments.

Autoscale the trace.

Return the network analyzer to local mode and
perform error trapping.

End program execution.
Define a routine to trap errors.

Perform error trapping.

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS routine.

Define a routine to read all of one segment’s
parameters from the analyzer and display them
on the computer CRT.

Activate the I %th segment.
Interrogate the start frequency of the analyzer.

Read the start frequency into the computer’s list
table.

Interrogate the stop frequency of the analyzer.

Read the stop frequency into the computer’s list
table.

460

470

480

490
500

510

520

530

540

550
560
570

580
590
600

610

620

630

A$ = “POIN?;": GOSUB
100UTS

CALL IDENTER(CVNAS,
TABLE!(3, I%)): GOSUB
ERRORTRAP

IF (1% ¢ 21) THEN

ROWX = 3 + IX
ELSEIF (IX = 21) THEN

LOCATE 24, 1: PRINT "PRESS
<ENTER> TO CONTINUE";

DO UNTIL INKEYS =
CHR$(13): LOOP

FOR JX = 4 TO 24

LOCATE JX, 1: PRINT
SPACES$(80);

NEXT J%
ROWX = 3 + (1% MOD 20)
ELSE

ROWX = 3 + (1% MOD 20)
END IF

LOCATE ROWX, 1: PRINT USING
ne#v; TABCE); 1%;

PRINT USING “###ss sav,
TAB(23); TABLE!'(C1, IX) /
10000005 TAB(C42);
TABLE!'(2, IX) 7 1000000;

PRINT USING *t###s;
TAB(B5); TABLE!' (3, IX)

RETURN

Running the program
1. The computer reads in the frequency list table segments from the analyzer and displays the
data in a table. (It is assumed that a list frequency table has already been entered into the

analyzer.)

Interrogate the number of points of the analyzer.

Read the number of points into the computer’s list
table.

The first twenty segments will fit on the screen at
once.

Set the segment data display row accordingly.

There are too many segments to fit on the screen
at once.

Wait for the user to continue before clearing the
screen.

Clear the lines used to display the data from the
first twenty segments.

Set the segment data display row accordingly.

This is not one of the first twenty segments, so set
the segment data display row accordingly.

Display the segment parameters.

Return from the READL IST routine.

2. Enter a segment number, as prompted, to view only that segment on the analyzer.

3. Continue entering and viewing single segments. Enter 0 at the prompt to exit the loop.

4. The computer restores all the segments on the analyzer by displéying an all-segment sweep.

39

40

Using limit lines

To perform limit testing on the network analyzer over HP-IB, limits must first be loaded into the
network analyzer. Then the limits can be activated and the device measured. The device’s per-
formance to the specified limits is signaled by a pass or fail message on the network analyzer
display.

The following examples illustrate the use of the network analyzer to perform limit testing.
Example 5A constructs a table of limit segments which is then loaded into the network ana-
lyzer's limit table. Each segment stipulates an upper limit, lower limit, limit type, and stimulus
frequency. The command sequence for entering a limit table imitates the key sequence followed
when entering a table from the front panel in that there is a command for every key press. Edit-
ing a limit is also the same as the key sequence, and the network analyzer automatically
reorders the edited segments in order of increasing start frequency.

Example 5B performs limit testing by examining the limit/search fail bits which are set and
latched when limit testing or a marker search fails. There are four bits, one for each channel for
both limit testing and marker search. Their purpose is to allow the computer to determine
whether the test/search just executed was successful. The sequence of their use is to clear Event
Status Register B, to trigger the limit test or marker search, and then to check the appropriate fail
bit.

The best ways to trigger the limit test are with a single sweep (SING) or with a set number of
sweeps (NUMGn). Marker searches (max, min, target, and widths), however, are automatically
triggered by reading out related marker or bandwidth values. Regardless of how the limit/
search was triggered, the results can be found simply by checking the fail bit.

The limit table is carried as part of the learn string. While it cannot be modified in this form, it
can easily be stored and recalled.

Example 5A: Limit line setup

The following program illustrates how to create a limit table and transmit it to the network ana-
lyzer. It takes advantage of the computer’s ability to simplify creating and editing the table. The
table is entered and completely edited before being transmitted to the network analyzer. For
simplicity, the option of entering offsets is not given.

This program is stored on the Example Programs disk as IPG5A.BAS.

10 REM $INCLUDE: ‘QBSETUP’ Call the QuickBASIC initialization file GBSETUP.

20 CLS Clear the computer CRT.

30 ISCs=7 Assign the interface select code to a variable.

40 VNA& = 716 Assign the analyzer’s address to a variable.

50 CALL IOTIMEOUTCISC&, 10!): Define a system time-out of ten seconds and
GOSUB ERRORTRAP perform error trapping.

60 CALL I0OABORT(ISC&): GOSUB Abort any HP-IB transfers and perform error
ERRORTRAP trapping.

70 CALL IOCLEARCISC&): GOSUB Clear the analyzer’s HP-IB interface and perform
ERRORTRAP error trapping.

80 CALL IDOEDICISC&, 0): GOSUB Disable the End-Or-Identify mode for transferring
ERRORTRAP data and perform error trapping.

90 LOCATE 1, 1: INPUT "NUMBER Read in the desired number of limits from the
OF LIMIT SEGMENTS? ™, operator.
NUMBERXZ

100 DIM TABLE!C1TO 4, 1 T0 Create an array to hold the limit data (stimulus
NUMBER%) frequency value, upper limit value, lower limit

value, and limit type code).

110 DIM LIMITTYPESC1 TO Create an array to hold the limit type string.
NUMBERZ)

120 CLS Clear the computer CRT.

130

140
150

160
170
180

190

200

210

220
230
240

250
260

270
280

290

300

310

320

330
340

LOCATE &, 1: PRINT TAB(3);
WSEGMENT™; TAB(15);
nSTIMULUS (MHz)";
TAB(33); "UPPER (dB)";
TAB(49); “LOWER (dB)*";
TAB(E8)Y; “TYPE"™;

FOR IX = 1 TO NUMBERX
GOSUB LOADLIMIT

NEXT IX
GOSUB CLEARLINES

LOCATE 1, 1: INPUT *DO YOU
WANT TO EDIT (Y/N)?2 ™,
ANSHERS

DO UNTIL CCANSWERS = "N™)
OR CANSWERS = "n'"))

INPUTENTRY: LOCATE 1, 40:
INPUT “ENTRY NUMBER? *,
1%

IF ¢(CIX ¢ 1) OR (IZ>
NUMBERX)) THEN GOTO
INPUTENTRY

GOSUB LOADLIMIT
GOSUB CLEARLINES

LOCATE 1, 1: INPUT "DO YOU
WANT TO EDIT CY/N)? *,
ANSWERS

LOOP

A$ = “EDITLIML; CLEL;":
GOSUB 100UTS

FOR IX = 1 TO NUMBERX

As$ = “SADD; LIMS" +
STRS$(TABLE!(C1, I%X)) +
“MHZ;": GOSUB 100UTS

AS$ = “LIMU*" +
STR$(TABLE!(2, 1X)) +
“DB;*: GOSUB I00UTS

AS$ = "LIML"™ +
STRS$(TABLE!(3, I1X)) +
“DB;'": GOSUB I100UTS

AS = “LIMT™ +
LIMITTYPESCIX) + ";5:
GOSUB 100UTS

As$ = “SDON;*": GOSUB
100UTS

NEXT IX

As$ = "EDITDONE;
LIMILINEON;
LIMITESTON;": GOSUB
100UTS

Display the limit table header on the computer
CRT.

Repeat for each segment in the limit table.

Load the data for the current segment, TABLE! (1
to 4, 1%).Since LOADLIMIT is a subroutine, 1%
is used as a global variable.

Clear the CRT lines being used for data entry.
Determine if editing is initially desired.

Repeat until all editing has been done.

Get the number of the segment to be edited.

Make sure the segment number is valid.

Re-enter the segment data.
Clear the CRT lines being used for data entry.

Determine if more editing is desired.

To begin sending the table to the analyzer, open
the analyzer’s limit line table for editing, and
delete any existing segments.

Loop for each segment.

Add a segment, specifying its stimulus frequency
value, upper limit value, lower limit value, and
limit type. Then declare the current limit line
segment done.

Close the edit limit line table, display the limit
lines on the analyzer, and activate limit testing.

41

350

360
370
380

390
400

410
420
430
440
450
460
470
480
490
500
510
520

530

540
550
560
570

580
590

600

42

CALL IOLOCALCISC&): GOSUB
ERRORTRAP

END
ERRORTRAP:

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

RETURN
100UTS:

CALL IDOUTPUTS(VNAS, AS,
LENCA$)): GOSUB ERRORTRAP

RETURN
LOADLIMIT:

GOSUB CLEARLINES

LOCATE 1, 1: PRINT
“SEGMENT: '"; STRS$C(IX);

LOCATE 2, 1: PRINT
“STIMULUS VALUE (MHz)?*;

LOCATE 3, 1: PRINT "UPPER
LIMIT VALUE (dB)?";

LOCATE 4, 1: PRINT "LOWER
LIMIT VALUE (dB)?";

LOCATE 1, 40: PRINT "LIMIT
TYPE €1,2,3)7";

LOCATE 2, 42: PRINT "1 =
FLAT";

LOCATE 3, 42: PRINT "2 =
SLOPED";

LOCATE 4, 42: PRINT "3 =
SINGLE POINT™;

IF (CTABLE!C1, I%) <> 0) OR
(TABLE!'(2, IZ) <> 0) OR
(TABLE'(3, I%) <> 0) OR
(TABLE! (4, I1X) <> 0))
THEN

LOCATE 2, 22: PRINT
TABLE!' (1, IX);

LOCATE 3, 25: PRINT
TABLE!(2, I%);

LOCATE 4, 25: PRINT
TABLE!(3, I%2);

LOCATE 1, 59: PRINT
TABLE! (4, I%);

END IF
SAVE! = TABLE!(1, IX)

LOCATE 2, 21: INPUT
TABLE!C1, IX)

Return the network analyzer to local mode and
perform error trapping.

End program execution.
Define a routine to trap errors.

Perform error trapping,.

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS routine.

Define a routine to read in all of one segment’s
data from the operator’s input and load it into the
data table on the computer.

Clear the CRT lines being used for data entry.

Display the input labels.

If the segment contains valid data, display it at the
entry locations.

Save the stimulus frequency value of the current
table entry.

Read the stimulus frequency value of the
segment.

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770
780

790

800

810

IF TABLE!(1, I%Z) = 0 THEN
TABLE!C1, IZ) = SAVE!

LOCATE 2, 22: PRINT
SPACES$C17)

LOCATE 2, 22: PRINT
TABLE!C1, IX);

SAVE! = TABLE!(2, IX)

LOCATE 3, 23: INPUT
TABLE! (2, IX)

IF TABLE!(2, IX) = 0 THEN
TABLE!(2, IX) = SAVE!

LOCATE 3, 24: PRINT
SPACE$(15): LOCATE 3, 25:
PRINT TABLE!(2, IX);

SAVE! = TABLE!(3, IX)

LOCATE 4, 23: INPUT
TABLE! (3, IX)

IF TABLE'(3, 1X) = 0 THEN
TABLE!(3, IX) = SAVE!

LOCATE 4, 24: PRINT
SPACE$(15): LOCATE 4, 25:
PRINT TABLE!(3, IX)

SAVE! = TABLE!(4, IX)
TABLE!(4, IZ) =0

DO UNTIL (CTABLE!C4, 1%) >
0) AND (TABLE!(4, 1%) < 4))

LOCATE 1, 58: INPUT
TABLE! (4, 1X)

IF (TABLE'(4, 1%) = 0) THEN
TABLE!(4, IX) = SAVE!

Loaop

LOCATE 1, 59: PRINT
SPACES$(28): LOCATE 1, 59:
PRINT TABLE!(4, 1%)

LOCATE I%X + 6, 1: PRINT
SPACE$(80): LOCATE 1% + 6,
1: PRINT TAB(5); 1%;
TABC(19); TABLE! (1, I%);
TAB(36); TABLE!'(2, 1X);
TAB(52); TABLE!(3, I%);
TAB(68) ;

SELECT CASE TABLE!(4, IX)

CASE 1

PRINT "FLAT";

If no value or 0 was entered, return the stimulus
frequency to its previous value.

Display the new stimulus frequency.

Save the upper limit value of the current table
entry.
Read the upper limit value of the segment.

If no value or 0 was entered, return the upper
limit to its previous value.

Display the new upper limit.

Save the lower limit value of the current table
entry.

Read the lower limit value of the segment.

If no value or 0 was entered, return the lower
limit to its previous value.

Display the new lower limit.

Save the limit type integer code of the current
table entry.

Set TABLE! (4, I%) for entry into the DO UNTIL
loop. ’

Repeat until a valid limit type integer code has
been entered.

Read the limit type integer code of the segment.

If no value or 0 was entered and the previous
value was valid, return the limit type integer code
to that previous value.

Display the new limit type integer code.

Display the new data in the table.

Display the limit type corresponding to the limit
type integer code in the table. Set the current
LIMITTYPES entry to the proper two-character
code for transmission to the network analyzer.

A limit type integer code of 1 indicates “FLAT
LINE”.

43

44

820

830
840

850
860
870
880
890

900
910

920
930

LIMITTYPESCIX) = “FL"
CASE 2

PRINT "SLOPED*";
LIMITTYPESCIX) = “"SL"™
CASE 3

PRINT "SINGLE POINT";
LIMITTYPESCIX) = "SP"
END SELECT

RETURN

CLEARLINES:

FOR JX = 1TO 4

LOCATE J%, 1: PRINT
SPACES$(80)

NEXT J%
RETURN

Running the program

1. The computer clears the analyzer’s limit line table. If this is not desired, remove the CLEL
command from line 90.

A limit type integer code of 2 indicates
“SLOPING LINE".

A limit type integer code of 3 indicates “SINGLE
POINT”.

Return from the LOADL IMIT routine.

Define a routine to clear the CRT lines used for
data entry.

Clear each line.

Return from the CLEARL INES routine.

2. Enter the number of segments and then the parameters of each segment as prompted.

3. Edit the computer’s limit line table until it is satisfactory. Pressing <<ENTER> at a prompt
during editing leaves the parameter at its current value.

4. The computer sends the completed limit line table out to the analyzer, which orders the
segments, activates limit testing, and displays the limit lines.

Example 5B: PASS/FAIL tests

The following program illustrates how to perform limit testing using the limit/search fail bits in
Event Status Register B. The requirement that several sweeps in a row must pass is used in order
to ensure that the limit test pass was not extraneous due to the device settling or the operator
tuning during the sweep.

The program assumes that an appropriate calibration has been performed, that limit lines have
been defined, and that limit testing is on prior to running the program.

This program is stored on the Example Programs disk as IPG5B.BAS.

10
20
30
40
S0

60

70

80

a0

100

110
120

130

140

150

160

170

180
190
200

210
220

230
240

REM $INCLUDE: ‘QBSETUP’
CLS .

ISC& = 7

VNASs = 716

CALL IOTIMEOUTCISCZ, 10!):
GOSUB ERRORTRAP

CALL I0OABORTCISC&): GOSUB
ERRORTRAP

CALL TOCLEARCISCS): GOSUB
ERRORTRAP

CALL IOEODICISC&, 0): GOSUB
ERRORTRAP

INPUT "NUMBER OF
CONSECUTIVE PASSED
SWEEPS FOR
QUALIFICATION? ", QUAL2Z

STARTTEST: PASSESX = 0

CLS : PRINT "TUNE DEVICE"

CONTINUE: A$ = "0PC?;
SING;*: GOSUB 100UTS

CALL IOENTER(VNAS,
REPLY!): GOSUB ERRORTRAP

A$ = “ESB?;": GOSUB
100UTS

CALL IOENTERCVNASZ,
ESTAT!): GOSUB ERRORTRAP

IF CCESTAT! MOD 32) > 15)
THEN

IF (PASSESZ <> 0) THEN
SOUND 300, 5

GOTO STARTTEST
END IF
SOUND 1000, 1

PASSESX = PASSESZ + 1
IF PASSESZ = 1 THEN

CLS : PRINT "STOP TUNING"
END IF

Call the QuickBASIC initialization file QBSETUP.
Clear the computer CRT.

Assign the interface select code to a variable.
Assign the analyzer’s address to a variable.

Define a system time-out of ten seconds and
perform error trapping.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer’s HP-IB interface and perform
error trapping.

Disable the End-Or-Identify mode for transferring
data and perform error trapping.

Enter the number of sweeps that must pass before
the device is considered to have passed the limit
test.

Initialize the counter holding the number of
sweeps that have passed the limit test.

Display instructions on the computer CRT.

Sweep once and thus perform a limit test.
Wait for the end of the sweep.

Request the Event Status Register B value from
the analyzer.

Receive the Event Status Register B value from the
analyzer in order to check the fail bit.

Check if bit 4, the channel 1 limit fail bit, is set,
indicating that the device failed the current
sweep.

If sweeps have been passing, audibly warn the
operator that the device is now failing.

Restart the test sequence.

Indicate audibly that the device passed the current
sweep.

Increment the sweeps passed counter.

The device just passed its first sweep, encourage
the operator to stop tuning the device.

45

46

250

260

270

280
290
300
310
320

330

340

350

360
370

380
390
400

410

420

430

440
450

460

470

IF PASSESZ < QUALX THEN GOTO
CONTINUE

CLS : PRINT "DEVICE
PASSED"

FOR INDEXX = 1 TOS

SOUND 500, 1
SOUND 1000, 1
NEXT INDEXZX

SOUND 2000, 1

PRINT "PRESS <ENTER> TO
TEST NEXT DEVICE, <ESC»>
TO END.™

CHARS = CHR$(0)

DO UNTIL (C(CHARS =
CHR$(13)) OR (CHARS =
CHR$(27)))

CHARS = INKEYS$
Loap
IF (CHARS = CHR$(13)) THEN

GOTO STARTTEST
END IF

CALL I0LOCALCISC&): GOSUB
ERRORTRAP

END
ERRORTRAP:

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

RETURN
100UTS:

CALL IOOUTPUTSC(VNAS&, AS,
LENCAS$)): GOSUB ERRORTRAP

RETURN

Running the program

1. Set up a limit table on channel 1 for a specific device either manually or using Example 5A:
Limit line setup.

Loop until enough consecutive sweeps have
passed that the device is considered to have
passed the limit test.

Display program progress on the computer CRT.

Indicate audibly that the device has passed the
limit test.

Display instructions on the computer CRT.

Initialize CHARS for entry into the DO UNTIL
loop.

Wait until a valid key (<ENTER> or <ESC>)is
pressed.

If <ENTER> was pressed, return to the
beginning of the test cycle to test the next device.

Return the network analyzer to local mode and
perform error trapping.

End program execution.
Define a routine to trap errors.

Perform error trapping.

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS routine.

2. Run the program. Specify the number of sweeps that must pass for qualification. For very
slow sweeps, as few as two sweeps is appropriate. For very fast sweeps, as many as six or
more sweeps may be needed.

3. Connect the filter. The computer beeps to indicate the test status.

4. When enough consecutive sweeps pass, the computer warbles and requests a new device.

Storing /recalling instrument states

It is possible to store and recall entire instrument states over HP-IB using the commands to read
the learn string and the calibration data out of the analyzer. The learn string is up to 3000 bytes

long and is in form 1, instrument internal binary. It includes all front panel settings, the list fre-
quency table, and the limit table for each channel. It is read out with OUTPLEAS and sent back
with INPULEAS.

Although the learn string contains the identity of the current active calibration, it does not con-
tain the calibration data. Therefore, in order to get the entire instrument state, it is necessary to
read out the learn string and the calibration data. This calibration data is stored inside the net-
work analyzer in up to twelve calibration coefficient arrays. Each array is a specific error
coefficient and is stored and transmitted as a data array of which each point is specified as a
real /imaginary pair of real numbers. The number of points in the array is the same as the
number of points in the sweep. For more information about which calibration coefficients corre-
spond to which calibration types, see the section entitled Calibration Arrays in the HP-IB Quick
Reference.

The computer can read out the error coefficient arrays using the commands QUTPCALCO01,
OUTPCALCO2, ... QUTPCALC12. Each calibration type uses only as many arrays as are needed,
starting with array 1. Hence, it is necessary to know the calibration type and therefore the
number of arrays before trying to read them out. Although the calibration type is in the learn
string, it is difficult to extract. Instead, it can be determined if a calibration type is active by send-
ing the mnemonic of the type in question followed by a question mark (CALIRESP?). The
analyzer will then respond with 1 if that type is active and 0 if it is not.

Calibration data can also be sent from the computer to the analyzer. The calibration type
mnemonic must be sent first to prepare the analyzer. Then the calibration coefficient arrays can
be transferred using the INPUCALCnn commands. Once all the coefficients are in the analyzer,
the command sequence SAVC; CONT will create a calibration set and put the analyzer in contin-
uous sweep trigger mode, thereby activating the calibration.

Example 6A: Learn string

The following program makes use of the learn string to transfer the instrument state between
the analyzer and the computer. It demonstrates the use of the commands QUTPLEAS and
INPULEAS. Note that character matching must be disabled by calling the HP-IB Command
Library routine 1OMATCH before the learn string is read in by the routine IGENTERS. This pre-
vents the computer from terminating on a linefeed when the string is read because the learn
string may contain linefeeds as part of its information.

This example program is stored on the Example Programs disk as [IPG6A.BAS.

10 REM $INCLUDE: ‘QBSETUP’ Call the QuickBASIC initialization file QBSETUP.
20 CLS Clear the computer CRT.

30 ISCs =7 Assign the interface select code to a variable.

40 VNA& = 716 Assign the analyzer’s address to a variable.

50 CALL IOTIMEDUTCISC&, 10!): Define a system time-out of ten seconds and

60

70

80
90

100

GOSUB ERRORTRAP

CALL I0ABORT(ISC&): GOSUB
ERRORTRAP

CALL IOCLEAR(CISC&): GOSUB
ERRORTRAP

MATCHS = CHR$(10)
ENABLEZXZ = 1: DISABLEX = 0

CALL IOMATCHCISC&, MATCHS,
DISABLEX): GOSUB ERRORTRAP

perform error trapping.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer’s HP-IB interface and perform
error trapping.

Define the match character as the linefeed.

Initialize flag values to enable and disable
character matching.

Disable character matching for the current match
character, the linefeed. This prevents termination
on a linefeed when a string is read since the
linefeed could actually be part of the learn string
information.

47

48

110

120
130

140

150

160

170

180

190

200

210

220

230

240
250
260

270
280

290

300

A$ = “OUTPLEAS;": GOSUB
100UTS

MAXZ = 3000

LEARNSTRINGS =
SPACES$ (MAXX)

ACTUALZ = 0

CALL TOENTERS(VNAS,
LEARNSTRINGS , MAXZ,
ACTUALZ): GOSUB ERRORTRAP

LEARNSTRINGS =
LEFT$CLEARNSTRINGS,
ACTUALX)

CALL IOMATCHCISC&, MATCHS,
ENABLEX): GOSUB ERRORTRAP

CALL IOLOCALCISC&): GOSUB
ERRORTRAP

PRINT "CHANGE STATE AND
PRESS <ENTER>*"

DO UNTIL INKEY$ = CHR$(13):
LOOP

A$ = “INPULEAS" +
LEARNSTRINGS + *;*:
GOSUB 100UTS

PRINT “INITIAL INSTRUMENT
STATE RESTORED.™

CALL IOLOCALCISC&): GOSUB
ERRORTRAP

END
ERRORTRAP:

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

RETURN
100UTS:

CALL IOOUTPUTS(VNAL, AS,
LENCA$)) : GOSUB ERRORTRAP

RETURN

Running the program
1. The computer reads the learn string in from the analyzer, thereby storing its state.

Request the learn string from the analyzer.

Set the maximum number of characters to read in.

Set aside space to receive the learn string.

Initialize the actual number of characters read in.
This variable is given a value by I0ENTERS.

Receive the learn string from the analyzer.

Redefine the learn string to contain only the
information read in from the analyzer.

Enable character matching. This results in
termination on a linefeed when a string is read.

Put the analyzer in local mode.

Allow the operator to connect a new analyzer or
to modify the state of the present analyzer from
the front panel.

Restore the state defined in the learn string to the
analyzer.

Display program progress on the computer CRT.

Return the network analyzer to local mode and
perform error trapping.

~ End program execution.

Define a routine to trap errors.

Perform error trapping.

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping,.

Return from the 100UTS routine.

2. Change the state of the analyzer from its front panel as prompted.

3. The computer sends the learn string back to the analyzer, thereby restoring it to its original
state.

Example 6B: Reading calibration data

The following program illustrates how to determine which calibration is active, how to read
measurement calibration data out of the network analyzer, and how to put it back into the
instrument.

The two-dimensional calibration coefficient arrays are transferred in form 5, PC-DOS 32-bit
floating point format. They are stored in one three-dimensional array from which they can be
examined, modified, stored, and put back into the instrument. If the data is only to be stored
and put back, it is most efficient to read it in form 1, instrument internal binary format.

This example program is stored on the Example Programs disk as IPG6B.BAS.

10
20
30
40
50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220
230

REM $INCLUDE: ‘QBSETUP’
CLS

ISCe = 7

VNAS& = 716

CALL IOTIMEOUTCISC&, 10!):
GOSUB ERRORTRAP

CALL IOABORT(ISC&): GOSUB
ERRORTRAP

CALL IOCLEARCISC&): GOSUB
ERRORTRAP

CALL IDEOICISC&, 0): GOSUB
ERRORTRAP

DIM CALTYPES(1 TO ©),
NUMBERZ(1 TO ©)

CALTYPE$C1) = “"CALIRESP":

NUMBERZ(C1) = 1

CALTYPES$(2) = "CALIRAI"™:
NUMBERZ(2) = 2

CALTYPE$(3) = “CALIS111":

NUMBERZ(3) = 3

CALTYPES$(4) = "™CALIS221":

NUMBERZ(4) = 3

CALTYPES$(5) = “CALIFUL2":

NUMBERZ(5) = 12

CALTYPES$(G) = "“NOOP*:
NUMBERZ(6) = 0

LOCATE 5§, 25: PRINT

"“CALIBRATION NUMBER OF*"

LOCATE 6, 25: PRINT
* TYPE ARRAYS"

FOR IXZ =1TO6

LOCATE 7 + IX, 18: PRINT
USING "#*; 1%;

PRINT *."; TAB(27);
CALTYPESCIZ); TAB(45);

PRINT USING "##";
NUMBERZCIX)

NEXT I%
ACTIVE! = 0

Call the QuickBASIC initialization file GBSETUP.
Clear the computer CRT.

Assign the interface select code to a variable.
Assign the analyzer’s address to a variable.

Define a system time-out and perform error
trapping.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer’s HP-IB interface and perform
error trapping.

Disable the End-Or-Identify mode for transferring
data and perform error trapping.

Set up parallel arrays of possible calibrations and
the number of arrays associated with each
calibration.

Display the calibration table heading.

Display a table of possible calibrations on the
computer CRT.

Initialize ACTIVE! for entry into the DO UNTIL
loop.

49

50

240

250

260

270

280
290

300
310
320

330

340

350

360

370

380

390

400
410

420

430

440

450
460

DO UNTIL ACTIVE!

INDEXX = 0

DO UNTIL CCINDEXZ > 0) AND
CINDEXX < 7))

LOCATE 15, 25: INPUT
“ENTER SELECTION: *,
INDEXZ

LOOP

IF (NUMBERZCINDEX%) = 0)
THEN

CLS : GOTO FINISH
END IF

A$ = CALTYPESCINDEXX) +
"*7;%: GOSUB IDOUTS

CALL IOENTERCVNAS,
ACTIVE!): GOSUB ERRORTRAP

LaopP
CLS

PRINT “CALIBRATICON TYPE:
“; CALTYPESCINDEXZ)

PRINT “NUMBER OF ARRAYS:
*; NUMBERZCINDEXX)

A$ = “FORMS; POIN?;":
GOSUB 100UTS

CALL IOENTERCVNAS,
POINTS!): GOSUB ERRORTRAP

POINTSX = INTC(POINTS!)

DIMCAL!C1TO 2, 0TO
POINTSX, 1 TO
NUMBERZCINDEXZ))

DIMDIGITS$(1 TO
NUMBERZ CINDEXZX))

LOCATE 1, 41: PRINT
*ARRAYS RECEIVED: "

MAXXZ = 4 * 2 * POINTSY + 4

FLAGX = 1

FORIZ =1TO
NUMBERX C INDEXX)

Repeat until the active calibration type is selected
by the user.

Initialize INDEXX for entry into the DO UNTIL
loop.

Get a valid calibration type selection from the
user.

If no calibration was active, clear the computer
CRT and go to the end of the program.

Ask the network analyzer if the user-chosen
calibration is active.

Get the response from the analyzer.

Clear the computer CRT.

Confirm that the analyzer’s active calibration has
been found by displaying it and its corresponding
number of arrays on the computer CRT.

Set data to be transferred in form 5, PC-DOS
floating point and request the number of points
from the analyzer.

Receive the number of points from the analyzer.

Convert the number of points to an integer.

Allocate space for a three-dimensional array to
hold all the calibration coefficients. Think of CAL !
as a data structure with a two-dimensional array
for each of the calibration type’s corresponding
arrays. These two-dimensional arrays are read in
one at a time, and each is preceded by a four-byte
header. Space is allocated for these headers by
extending CAL !‘s second dimension by one and
thus adding two real numbers (eight bytes) to the
beginning of each two-dimensional array.

Dimension an array to hold two-digit integers
from 1 to the number of arrays, each integer with
a leading zero if necessary. These are used with
OUTPCALC and INPUCALC commands.

Display a heading for program progress
information.

The maximum number of bytes to read in for each
two-dimensional array is two four-byte numbers
per point with POINTSX points plus a four-byte
header.

Set FLAGX for no swapping of bytes.

Read in each of the two-dimensional arrays
making up CAL! one at a time.

470

480

490

500

S10
520

S30

5S40

550

560

570

580

590

600

610

620

630

640

650

660
670
680

690

700

ACTUALZ = 0

DIGITS$CIX) = STR$CIX)

IF (LENCDIGITS$CI%)) = 2)
THEN

DIGITSCIX) = 0" +
RIGHTS$(DIGITS$CIX), 1)

ELSE

DIGITS$(CIX) =
RIGHT$(DIGITS$C(IZ), 2)

END IF

A$ = “QUTPCALC" +
DIGITSCI%) + *;": GOSUB
100UTS

CALL IOENTERB(VNA&, SEG
CAL!(2, 0, IX), MAXX,
ACTUALX, FLAGX): GOSUB
ERRORTRAP

LOCATE 1, 60: PRINT IX
NEXT IX

LOCATE 4, 1: PRINT "PRESS
<ENTER> TO RE-TRANSMIT
CALIBRATION."

DO UNTIL INKEY$ = CHR$(13):

LoaP

LOCATE 4, 1: PRINT
SPACES$(80)

A$ = CALTYPESCINDEXZ%) +
%;": GOSUB 100UTS

LOCATE 2, 41: PRINT
“ARRAYS TRANSMITTED: *;

FOR IX =1TO
NUMBERZCINDEXX)

As$ = “INPUCALC" +
DIGITS$CI%) + *;": GOSUB
100UTS

CALL IOOUTPUTB(VNA&, SEG
CAL!(2, 0, IX), MAXXZ,
FLAGX)

LOCATE 2, 60: PRINT IX
NEXT IX

As$ = "SAVC;": GOSUB
100UTS

As$ = “CONT;*: GOSUB
100UTS

FINISH: LOCATE 4, 1: PRINT
“DONE"™

Initialize or re-initialize the actual number of
bytes read in.

Create the current two-digit number string
corresponding to 1%.

Since strings corresponding to positive numbers
are preceded by a space, one-digit numbers are
two characters long. These must be converted to 0
followed by the one digit in order to be the
required two digits long.

The number is already two digits long, so simply
remove the preceding space.

Request the current two-dimensional calibration
coefficient array from the analyzer.

Read in the current two-dimensional array,
specifying the beginning array address as one real
number (four bytes) before the desired destination
of the true data in order to read in the header.

Display program progress on the computer CRT.

Display instructions on the computer CRT.

Wait for the operator to continue.

Clear the instruction display line on the computer
CRT.

Prepare the analyzer to receive the correct
calibration type from the computer.

Display a heading for program progress
information.

Send out each of the two-dimensional arrays
making up CAL ! separately.

Prepare the analyzer to receive the current two-
dimensional calibration coefficient array.

Send the current two-dimensional calibration
coefficient array to the analyzer.

Display program progress on the computer CRT.

Create a cal set using the current calibration data.

Trigger a sweep so that the calibration becomes
active.

Display program progress on the computer CRT.

51

52

710

720
730
740

750
760

770

780

CALL T0LOCALCISC&): GOSUB
ERRORTRAP

END
ERRORTRAP:

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

RETURN
100UTS:

CALL IOOUTPUTS(VNAL, AS,
LENCA$)): GOSUB ERRORTRAP

RETURN

Running the program

1. When the computer displays the calibration type table, enter the number corresponding to
the active calibration on the analyzer. Before continuing, the computer ensures that the cor-
rect type was chosen by questioning the analyzer.

Return the network analyzer to local mode and
perform error trapping.

End program execution.
Define a routine to trap errors.

Perform error trapping,.

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS routine.

2. The computer reads the up to twelve calibration coefficient arrays from the network analyzer
one at a time into one three-dimensional array.

3. Press <ENTER> on the computer CRT as prompted.

4. The computer sends the up to twelve calibration coefficient arrays back to the network
analyzer one at a time.

Miscellaneous Programming Examples

Example 7:

Interrupt generation

The following program illustrates how to use the HP-IB Command Library routine IOPEN and
QuickBASIC’s PEN statements to generate interrupts. A call to IOPEN:

CALL IOPENCISCe&, 0): GOSUB ERRORTRAP

will enable a Service Request (SRQ) to generate an interrupt that can be detected by Quick-
BASIC'’s PEN statements. Through these statements, QuickBASIC has the ability to enable (PEN
ON) and disable (PEN OFF) HP-IB interrupts and execute an interrupt handling routine every

time one occurs (ON PEN GOSUB xxxx).

In order for the analyzer to generate an SRQ when a specific event occurs, both the desired
Event Status Register bit and the desired status byte bit must be enabled. The status reporting
system can be set up using HP-IB commands, and it must be reset every time the status is
cleared (CLES). For example, ESE 64; SRE 32 enables the User Request bit (6; 64 = 276) of the
Event Status Register and the Event Status Register summary bit (5; 32 = 2"5) of the status
byte (refer ahead to Figure A.1 on page 65). This means that when the User Request bit is

set, the Event Status Register summary bit in the status byte is set. Likewise when the Event
Status Register summary bit in the status byte is set, an SRQ is generated. With this status
reporting system, a key press will generate an SRQ. By then using the above described PEN
statements, an SRQ can be made to generate an interrupt, which will cause a special inter-
rupt handling routine to be executed.

The following program uses the HP-IB command WRSKn to re-label the softkeys. The inter-
rupt generation system is then set up so that when a key is pressed, the computer processes
the generated interrupt by identifying which key was pressed. If full use of this method is
made, an automatic system would no longer require a computer keyboard and would
instead be as easy to use as a manual instrument.

This example program is stored on the Example Programs disk as IPG7.BAS.

10
20
30
40
50

60

70

80

20

100

110

120

REM $INCLUDE: ‘QBSETUP’
CLS

ISC& = 7

VNAS = 716

CALL IOTIMEQUTCISCS, 10!):
GOSUB ERRORTRAP

CALL IOABORT(ISC&): GOSUB
ERRORTRAP

CALL IOCLEARCISC&): GOSUB
ERRORTRAP

CALL IOEOICISC&, 0): GOSUB
ERRORTRAP

A$ = “PRES;": GOSUB
100UTS

As$ = “"CLES; ESEG4;
SRE32;*: GOSUB 100UTS

A% = "MENUMRKF;": GOSUB
100UTS

As$ = "MENUOFF;*: GOSUB
100UTS

Call the QuickBASIC initialization file GBSETUP.
Clear the computer CRT.

Assign the interface select code to a variable.
Assign the analyzer’s address to a variable.

Define a system time-out of ten seconds and
perform error trapping.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer’s HP-IB interface and perform
error trapping.

Disable the End-Or-Identify mode for transferring
data and perform error trapping.

Preset the network analyzer.

Clear the status byte and set the status reporting
system to the following:

1) Bit 6, User Request, of the Event Status
Register is summarized by bit 5 of the status
byte. This allows a key press to be detected by
a serial poll.

2) Bit 5 of the status byte, the Event Status
Register, is enabled. This allows the Event
Status Register to generate service requests.

Activate a menu that uses all of the softkeys in
order to ensure that each softkey is active and
may be written to.

Turn the built-in softkey menu off so that the
softkeys may be labeled by the computer.

53

54

130

140

150

160

170

180
190
200

210

220

230

240

250
260

270

280
290
300

310
320

330

340
350
360

370

380

390

+

As$ = "WRSK1 " + CHR$(34)
"CAL #1* + CHR$(34) +
;: GOSUB 100UTS

+

AS$ = "WRSK2 " + CHR$(34)
“TEST #1" + CHR$(34) +
“;'": GOSUB 100UTS

A$ = "WRSK3 " + CHR$(34)
“CAL #2" + CHR$(34) +
“;": GOSUB 100UTS

A%$ = "WRSK4 ' + CHR$(34)
“TEST #2* + CHR$(34) +
"*;': GOSUB 100UTS

A$ = "WRSKS " + CHRS$(34) +
“ABORT™ + CHR$(34) + ";":
GOSUB 100UTS

PRINT *SOFTKEYS LOADED"
PEN OFF
ON PEN GOSUB GETSRQ

+

+

PEN ON

CALL IOPENCISC&, 0): GOSUB
ERRORTRAP

WAITSRA:

IF KEYCODEZ <> 10 THEN
GOTO WAITSRA

PEN OFF

A$ = “MENUON;": GOSUB
100UTS

CALL IOLOCALCISC&): GOSUB
ERRORTRAP

END
ERRORTRAP:

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

RETURN
100UTS:

CALL IOOUTPUTS(VNAL, AS,
LENCA$)): GOSUB ERRORTRAP

RETURN
GETSRQ:

CALL IOSPOLL(VNAS&, STATX):
GOSUB ERRORTRAP

A$ = “CLES; ESEG4;
SRE32;*": GOSUB 100UTS

A$ = “OUTPKEY;"™: GOSUB
100UTS

CALL IOENTER(VNAS,
KEYCODE!): GOSUB ERRORTRAP

Label the softkeys. The label must be preceded
and followed by double quotes. To put double
quotes within a string in QuickBASIC, use
CHR$(34).

Display program progress on the computer CRT.
Disable HP-IB interrupts.

Set up the interrupt system so that whenever an
HP-IB interrupt occurs, a routine that gets a
service request will be executed.

Enable HP-IB interrupts.

Let an SRQ generate an interrupt.

Continue to let key presses generate interrupts
until the eighth softkey, labeled <ABORT>, is
pressed.

Disable HP-IB interrupts.

Turn the softkey menu back on.

Return the network analyzer to local mode and
perform error trapping.

End program execution.
Define a routine to trap errors.
Perform error trapping.

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS routine.
Define a routine to get a service request.

Perform a serial poll to read in the status byte and
thereby clear it.

Ensure that the status byte was cleared and that
the proper status reporting system is in operation.

Request the code of the last analyzer key pressed
from the analyzer.

Receive the key code from the analyzer.

400
410

420

430

440

450

460

470

480
490

KEYCODEX = INTC(KEYCODE!)
SELECT CASE KEYCODEX :
CASE 60

CLS : LOCATE 1, 1: PRINT
“CALIBRATION #1*

CASE 61

CLS : LOCATE 1, 1: PRINT
mTEST #1*

CASE 56

CLS : LOCATE 1, 1: PRINT
“CALIBRATION #2"

CASE 59

CLS : LOCATE 1, 1: PRINT
wTEST #2"

CASE 10

CLS : LOCATE 1, 1: PRINT
“"ABORT"™

CASE ELSE

CLS : LOCATE 1, 1: PRINT
e * #UNDEF INED** **

END SELECT
RETURN

Running the program
1. The computer presets the network analyzer, relabels the softkeys, and sets up the desired
network analyzer status reporting and interrupt generation systems.

Convert the key code to an integer.

The first softkey is labeled CAL #1.
The second softkey is labeled TEST #1.
The third softkey is labeled CAL #2.
The fourth softkey is labeled TEST #2.
The eightb softkey is labeled ABORT.

No other keys are defined.

Return from the GETSRQ routine.

2. When a key is pressed, an interrupt is generated and the interrupt handling routine, which
displays the identity of the key pressed on the computer, is executed.

3. Press the network analyzer softkey labeled ABORT to end the program.

55

56

Example 8: User interface

The following example program illustrates how to create a custom user interface involving only
the front panel keys and the display of the network analyzer. Graphics can be drawn by sending
HP-GL (Hewlett-Packard Graphics Language) commands to the network analyzer display. See
the section entitled Display Graphics in the HP-IB Quick Reference for a list of accepted HP-GL
commands and their functions.

It is possible to customize a user interface by taking over the network analyzer’s front panel
keys. The User Request bit in the Event Status Register is set whenever a front panel key is
pressed or the knob is turned regardless of the current mode (local or remote) of the ana-
lyzer. Each key has its own number, as shown in Figure E.4, Front Panel Keycodes, of the HP-
IB Quick Reference. The number of the key last pressed can be read with QUTPKEY? or KOR?.

With OUTPKEY?, a knob turn is always reported as negative one. With KOR?, a knob turn is
reported as a negative number encoded with the number of counts turned. There are 120
counts per knob rotation. Clockwise rotations are reported as numbers from —1to —64, —1
being a very small rotation. Counter-clockwise rotations are reported as numbers from
—32767 to —32701, —32767 being a very small rotation. Hence, clockwise rotations do not
need any decoding at all; counter-clockwise rotations can be decoded by adding 32768.

This example uses the knob and the up and down keys on the network analyzer to adjust
the size and position of a grid on the display. Pressing [ENTRY OFF] on the network ana-
lyzer selects the current size or position and continues the program.

This example program is stored on the Example Programs disk as [PG8.BAS.

10 REM SINCLUDE: ‘QBSETUP’ Call the QuickBASIC initialization file GBSETUP.

20 CLS Clear the computer CRT.

30 1ISCs =7 Assign the interface select code to a variable.

40 VNA& = 716 Assign the analyzer’s address to a variable.

S50 DISPLAY: = 717 Assign the analyzer display’s address to a

variable.

60 CALL IOTIMEOUTCISC&, 10!): Define a system time-out of ten seconds and
GOSUB ERRORTRAP perform error trapping.

70 CALL IDABORT(ISC&): GOSUB Abort any HP-IB transfers and perform error
ERRORTRAP trapping.

80 CALL IOCLEARCISC&): GOSUB Clear the analyzer’s HP-IB interface and perform
ERRORTRAP error trapping.

90 CALL IOEOICISC&, 0): GOSUB Disable the End-Or-Identify mode for transferring
ERRORTRAP ~ data and perform error trapping.

100 ADDRESS& = VNA&: AS = Prepare the analyzer by scaling the trace for
"“AUTO; CLES; ESE64; plotting, clearing the status byte, and setting up
POIN?;*: GOSUB IDOUTS the status reporting system so that bit 6, User

Request, of the Event Status Register is
summarized by bit 5 of the status byte (allowing a
key press to be detected by a serial poll). Then
request the number of points from the analyzer.

110 CALL ICENTERCVNA&, Receive the number of points from the analyzer.
POINTS!): GOSUB ERRORTRAP

120 POINTSX = INTCPOINTS!) Convert the number of points to an integer.

130 DIMDAT!(1TO 2, 0 TO Prepare an array to receive the data.

POINTSX)
140 ADDRESS& = VNA&: AS$ = Sweep once and then hold. Tell the analyzer to

MSING; FORM2;
QUTPFORM;*: GOSUB 100UTS

send out formatted data in form 2, IEEE 32-bit
floating point.

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330
340
350

360

370

MAX% = POINTSX * 2 * 4 + 4

ACTUALXZ = 0

FLAGX = 4

CALL T0OENTERB(VNAS, SEG
DAT!(2, 0), MAXZ, ACTUALZ,
FLAGX) : GOSUB ERRORTRAP

ADDRESS& = VNAL: AS =
“SCAL?;*": GOSUB 100UTS

CALL IOENTER(VNA&, SCAL!):

GOSUB ERRORTRAP

ADDRESS& = VNA&: AS =
“REFP?;'"™: GOSUB I00UTS

CALL TOENTERCVNA&, REFP!):

GOSUB ERRORTRAP

ADDRESS& = VNA&: AS =
“REFV?;": GOSUB 100UTS

CALL I0ENTERCVNAS, REFV!):

GOSUB ERRORTRAP
XMAXZ = 5850: YMAXZ = 4094

XCENTERZX = XMAXX / 2:
YCENTERZ = YMAXZ / 2

SIZEZ = 750

ADDRESS& = DISPLAY&: AS =

“CS; SP2;': GOSUB 100UTS

PRINT "ADJUST SIZE OF
VIEWPORT. PRESS [ENTRY
OFF1 TO CONTINUE."

KEYCODEZ = 0: OLDSIZEZ = 0

DO UNTIL C(KEYCODEZ = 34)

IF (SIZEX <> OLDSIZEX)
THEN

GOSUB DRAWSGQUARE
OLDSIZEX = SIZEX
END IF

GOSUB GETKEY

IF KEYCODEZ < 0 THEN

The maximum number of bytes to be read in is
two 4-byte real numbers per point with POINTSX
points plus the four-byte (two-integer) header.

Initialize the actual number of bytes read in. This
variable is given a value by I0ENTERB.

Swap every four bytes.

Read in the data from the analyzer.

Request the scale factor from the network
analyzer.

Receive the scale factor.

Request the reference position from the network
analyzer.

Receive the reference position.

Request the value at the reference position from
the network analyzer.

Receive the value at the reference position.

Set maximum limits for x and y values.These are
the corner coordinate values given in the section
entitled Display Graphics in the HP-IB Quick
Reference; YMAXZ is rounded to an even number
for simplicity.

Initialize the center values for x and y to
reasonable values.

Initialize the size of the square to a reasonable
value.

Turn off the analyzer’s measurement display and
set its color to that of channel 1 memory using
display graphics commands.

Display instructions on the computer CRT.

Initialize KEYCODE for entry into the DO UNTIL
loop, and initialize OLDSIZEX% for entry into the
IF...THEN loop. This ensures that the square is
drawn the first time.

Continue to adjust the size of the square until
[ENTRY OFF] is pressed on the analyzer.

If the size of the square has been changed, redraw
it.

Keep track of the previous size setting.

If the size has not changed, the square does not
need to be redrawn.

Wait for an analyzer key to be pressed, and get its
code.

KEYCODEX indicates a knob count if it is negative.

57

58

380

390

400
410

420

430
440
450
460
470
480

490
500
510
520
530
540

550

560

570

580

590
600

610

620

630

IF (KEYCODEX < —64) THEN
KEYCODEX = KEYCODEX +
32768
SIZEXZ = SIZEX — KEYCODEX
* 15

ELSE
IF (KEYCODEX <> 34) THEN
PRINT "ONLY <ENTRY OFF>
AND KNOB TURNING ARE
VALID ENTRIES™
END IF

END IF

IF (SIZE%X < 100) THEN
SIZEX = 100

ELSE
IF (SIZEZ > C(CYMAXX / 2) —
2)) THEN
SIZEX = (CYMAXX / 2) — 2)
END IF

END IF

LogpP

CLS

ADDRESS& = DISPLAY&: AS =

"“"SP4;": GOSUB 100UTS

PRINT "ADJUST POSITION
OF VIEWPORT. PRESS
<ENTRY OFF> TO STOP."™

KEYCODEZX = 0: OLDXCENTERZ =
0: OLDYCENTERX = 0

DO UNTIL (KEYCODEX = 34)

IF CCOLDXCENTERZ <>
XCENTERX) OR
COLDYCENTERX <>
YCENTERX)) THEN

GOSUB DRAWSQUARE

OLDXCENTERX = XCENTERX:
OLDYCENTERX = YCENTERX

END IF

GOSUB GETKEY

SELECT CASE KEYCODEX
CASE 26

If the knob count is less than —64, add 32768
(2~15) to recover it. If the knob count is greater
than —64, no decoding is needed.

Adjust the size of the square according to the
knob count, multiplying the knob count to make
the size change significant.

KEYCODEX indicates a key press if it is positive.

If the key press was not [ENTRY OFF], it was not
a valid key, so display an appropriate message on
the computer CRT.

Enforce the minimum size limit.

Enforce the maximum size limit.

The size of the square has now been adjusted.
Clear the computer CRT.

Set the analyzer display’s color to that of channel
2 memory by using a display graphics command.

Display operator instructions on the computer
CRT.

Initialize variables for entry into the DO UNTIL
and IF...THEN loops. This ensures that the
square is drawn the first time.

Continue to adjust the position of the square until
[ENTRY OFF] is pressed on the analyzer.

If the position of the square has been changed,
redraw it.

Keep track of the previous center settings.

If the position has not changed, the square does
not need to be redrawn.

Wait for an analyzer key to be pressed, and get its
code.

Reposition the square according to KEYCODEX.
[UP ARROW] was pressed.

640

650

660

670

680

690
700

710

720
730

740
750
760

770

780
790

800
810
820
830
840
850
860
870

880
830

300

YCENTERZ = YCENTERZ + 150
CASE 18

YCENTERYX = YCENTERX — 150
CASE IS ¢ 0

IF (KEYCODEX ¢ —64) THEN
KEYCODEZX = KEYCODEZ +
32768

XCENTERX = XCENTERX —
KEYCODEX * 20

CASE 34

CASE ELSE

PRINT "ONLY (UP ARROW],
[DOWN ARROW], [ENTRY
OFF 1, AND KNOB TURNING
ARE VALID"

END SELECT

IF XCENTERX > (XMAXX —
SIZE% — 2) THEN

XCENTERX = (XMAXX — SIZEX
- 2)

ELSE

IF XCENTERX < (SIZEXZ + 2)
THEN

XCENTERZ = (SIZEX + 2)
ELSE

IF YCENTERX >CYMAXZ —
SIZEX — 2) THEN

YCENTERZ = (YMAXZ —
SIZEX — 2)

ELSE

IF YCENTERX < (SIZEXZ +
2) THEN

YCENTERZ = (SIZEZ + 2)
END IF
END IF
END IF
END IF

LooP
CLS

ADDRESS& = DISPLAY&: AS =
“AF; SPS;™: GOSUB 100UTS

GOSUB DRAWSQUARE
FOR IX = 1TO9

OFFSETZ = (2 * SIZEX * IZ /
10) — SIZEX

Move the square up.

[DOWN ARROW] was pressed.
Move the square down.

The knob was turned.

Recover the knob count, if necessary.

Move the square to the left or to the right
according to the knob count, multiplying it to
make the position change significant.

[ENTRY OFF] was pressed, so accept the key as
valid and do not move the square.

An invalid key was pressed.

Display an appropriate message on the computer

Enforce the right side limit.

Enforce the left side limit.

Enforce the top side limit.

Enforce the bottom side limit.

The position of the square has now been adjusted.
Clear the computer CRT.

Erase the user graphics display, and set the
analyzer display’s color to that of the graticule by
using a display graphics command.

Redraw the square in its final color.

Draw a grid with ten divisions along each axis in
the square.

Determine the distance between the I%th grid line
and the zero axis.

59

60

910 A$ = “PU; PA™ +
STR$(XCENTERZ +
OFFSETX) + *,* +
STR$CYCENTERX — SIZEX)
+ ®,%. GOSUB 100UTS

920 A$ = “PD; PA™ +
STR$ (XCENTER% +
OFFSETX) + ™, " +
STR$ CYCENTERX + SIZEX) +
w;%: GOSUB 100UTS

930 AS$ = "PU; PA" +
STR$(XCENTERX — SIZEX)
+ %, "+ STR$CYCENTERZ +
OFFSET%) + *;*": GOSUB
100UTS

940 A$ = "PD; PA" +
STR$(XCENTERX + SIZEX) +
w,% + STR$C(YCENTERYX +
OFFSETX) + “;": GOSUB
100UTS

950 NEXT I%

960 ADDRESS& = DISPLAY&: AS =
“gpP1;*: GOSUB 100UTS

970 BOTTOM! = REFV! — REFP! *
SCAL!

980 FULL! = 10 * SCAL!

990 X% = XCENTERX — SIZEX

1000 YZ = C(DAT!C1, 1) —
BOTTOM!) /7 FULL?! * 2 ¢
SIZEX) + YCENTERZ — SIZEX

1010 ADDRESS& = DISPLAY4&: A$ =
“PU; PA™ + STR$CXX) + " "
+ STR$CYZ) + “;*: GOSUB
100UTS

1020 FOR IX = 2 TO POINTSX

1030 X% = CCCIX — 1) /
(POINTSXY — 1)) * 2 *
SIZEZ) + XCENTERZ —
SIZEXZ

1040 YZ = (C(DATHICY, IX) —
BOTTOM!) 7/ FULLY) * 2 *
SIZEX) + YCENTERY —
SIZEX

1050 As$ = "PD; PA" + STR$(XZ)
s UL GTRECYRD + 5%
GOSUB 100UTS

1060 NEXT IX

1070 CALL IOLOCALCISC&): GOSUB
ERRORTRAP

1080 END
1090 ERRORTRAP:

1100 IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

Draw the I%th vertical grid line.

Draw the 1%th horizontal grid line.

Set the analyzer display’s color to that of channel
1 data by using a display graphics command.

Calculate the value of the bottom grid line.

Calculate the value of the full scale span across
the grid.

Determine the x-position of the first point to plot.

Determine the y-position of the first point to plot.

Position the graphics pen at the first point to plot.

Draw the trace, point by point, using display
graphics commands.

Return the network analyzer to local mode and
perform error trapping.

End program execution.
Define a routine to trap errors.

Perform error trapping,.

1110 RETURN
1120 100UTS:

1130 CALL I00UTPUTSCADDRESS%,
As, LENCAS)): GOSUB
ERRORTRAP

1140 RETURN
1150 DRAWSQUARE :

1160 ADDRESS& = DISPLAY&: AS =
""AF ;*: GOSUB I00UTS

1170 A$ = “PU; PA™ +
STR$C(XCENTERZ — SIZEZ) +
*," + STR$CYCENTERZ —
SIZEX) + *;*": GOSUB
1ao0uTsS

1180 A$ = "“PD; PA" +
STR$CXCENTERX — SIZE%X) +
“," + STRSCYCENTERX +
SIZEX) + ";"™: GOSUB
100UTS

1190 A$ = “PD; PA" +
STR$(XCENTERX + SIZEX) +
"," + STR$CYCENTERY +
SIZE%) + ";": GOSUB
100UTS

1200 A$ = “PD; PA* +
STR$(XCENTERX + SIZEZ) +
"," + STRSCYCENTERX —
SIZE%) + ";": GOSUB
100UTS

1210 A$ = "PD; PA" +
STR$CXCENTERZ — SIZEX) +
"," + STR$CYCENTERX —
SIZEX) + ";": GOSUB
100UTS

1220 RETURN
1230 GETKEY :

1240 STATX = 0

1250 DO UNTIL (C(STATX MOD 64) >
3D

1260 CALL IOSPOLL(VNA&, STATX):

GOSUB ERRORTRAP

1270 LOOP
1280 ADDRESS& = VNA&: AS =
“ESR7?;*™: GOSUB 100UTS

1290 CALL IOENTER(VNA&, ESTAT!)

1300 ADDRESS& = VNA&: AS =
*KOR?;": GOSUB 100UTS

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS routine.

Define a routine to draw a square on the
analyzer’s display.

Erase the old square using display graphics
commands.

Position the “pen” at the lower left corner of the
square,

Draw the left side of the square.

Draw the top side of the square.

Draw the right side of the square.

Draw the bottom side of the square.

Return from the DRAWSQUARE routine.

Define a routine to wait for an analyzer key to be
pressed and to get the key’s code.

Initialize STATX for entry into the DO UNTIL loop.

Wait for a key press to be indicated by the setting
of bit 5 of the status byte.

Read in the status byte as an integer.

Now that a key press has occurred, request the
Event Status Register value from the analyzer.

Receive the Event Status Register value from the
analyzer, thereby clearing the latched User
Request bit so that old key presses will not trigger
a measurement.

Request the key code or knob count from the
analyzer.

61

62

1310 CALL IOENTER(VNAZ, Receive the key code or knob count.

KEYCODE !)
1320 KEYCODEX = INT(KEYCODE!) Convert the key code or knob count to an integer.
1330 RETURN Return from the GETKEY routine.

Running the program
1. Set up the analyzer to make a measurement before running the program.

2. Adjust the size of the display box from the network anaiyzer front panel using the knob.
Press [ENTRY OFF] when the size is satisfactory.
3. Adjust the position of the display box from the network analyzer front panel using the

knob and the up and down keys. Press [ENTRY OFF] when the position is satisfactory.

4. The computer sends the analyzer commands that draw a grid and the trace in the box on the
analyzer’s display.

Appendix A: Status Reporting

The status reporting mechanism of the network analyzer gives information about specific func-
tions and events inside the network analyzer. The status byte is an 8-bit register, each bit of
which summarizes the state of one aspect of the instrument. For example, the error queue sum-
mary bit will always be set if there are any errors in the queue. The value of the status byte can
be read in two ways. The first way is to send the command OUTPSTAT. The second is to call the
HP-IB Command Library routine 10SPOLL:

CALL IOSPOLLC(VNA&, STATX): GOSUB ERRORTRAP

The advantage of using this instead of the command OUTPSTAT is that this does not put the
analyzer into the remote mode, and it thus gives the operator access to the network analyzer
front panel functions. Reading the status byte does not affect its value.

In addition to the error queue, the status byte also summarizes the two Event Status Registers
that monitor specific instrument conditions. Furthermore, the status byte has a bit that is set
when the analyzer is issuing a service request over HP-IB and a bit that is set when the network
analyzer is prepared to transmit data over HP-IB. For a definition of the status registers, see Fig-
ure A.1, Status Reporting System.

To tell if a bit of the status byte is set, it is necessary to determine the integer value correspond-
ing to that bit (bit n is equivalent to 2" n). MOD can be used to remove the effect of all bits of
higher value than the one of interest, and = can be used to see if the bit of interest is set. For
example, bit 4 corresponds to an integer value of 16, and bit 5 corresponds to an integer
value of 32. If STATX is the integer representation of the status byte, the following
IF...THEN loop will only be entered if bit 4 is set:

IF CCSTATZ MOD 32> > 15> THEN...

Example Al1: Error queue

The following program illustrates how to monitor the analyzer’s error queue from the computer.
The error queue holds up to twenty instrument errors and warnings in the order that they
occurred. Each time the network analyzer detects an error condition, it writes a message to its
display and puts the error in the error queue. If there are any errors in the queue, bit 3 of the sta-
tus byte will be set. Once the computer detects than bit 3 is set, the error can be requested from
the queue with OUTPERRQ, which commands the network analyzer to transmit the number and
message of the oldest error in the queue.

Because the error queue will keep up to twenty errors until either all the errors are read out or
the instrument is preset, it is important to clear out the error queue whenever errors are
detected. Only errors, not prompts, are put in the error queue.

This example program is stored on the Example Programs disk as IPGALBAS.

10 REM S$INCLUDE: QBSETUP” Call the QuickBASIC initialization file GBSETUP.
20 CLS Clear the computer CRT.

30 ISC& =7 Assign the interface select code to a variable.

40 VNA& = 716 Assign the analyzer’s address to a variable.

S0 CALL IOTIMEQUTCISC&, 10!'): Define a system time-out of ten seconds and

60

70

80

90

GOSUB ERRORTRAP

CALL IDABORT(CISC&): GOSUB
ERRORTRAP

CALL IOCLEARCISC&): GOSUB
ERRORTRAP

CALL IOECICISCS, 0): GOSUB
ERRORTRAP

LENGTHX = 50

100 ERRDATAS$ = SPACES$(LENGTHX)

perform error trapping,.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer’s HP-IB interface and perform
error trapping.

Disable the End-Or-Identify mode for transferring
data and perform error trapping.

Set a maximum length for the string to hold the
error data.

Prepare a string to hold the error data.

63

64

110

120

130

140
150

160

170

180

190

200
210

220

230
240
250

260

270

280

290

300
310

320
330

340

350

STATUSPOLL: STATZ =0

DO UNTIL (CSTATX MOD 16) >
7)

CALL TOSPOLLCVNAG, STATX):

GOSUB ERRORTRAP

LoopP

A$ = "OUTPERRO;": GOSUB
100UTS

ACTUALZ = 0

CALL IOENTERS(VNAZ,
ERRDATAS, LENGTHZ,
ACTUALZ) : GOSUB ERRORTRAP

ERRNUMY =
VALCLEFT$(ERRDATAS, 5))

I =9

ERRIDS = *

DO UNTIL MIDSCERRDATAS, IX,
1) = CHR$(34)

ERRIDS = ERRIDS +
MID$C(ERRDATAS, IX, 1)

IZ =12 + 1
LooP

PRINT ERRNUMZ; *: *;
ERRIDS

CALL IOLOCALCISC&): GOSUB
ERRORTRAP

SOUND 550, 2
GOTO STATUSPOLL
END

ERRORTRAP :

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

RETURN
100UTS:

CALL TOOUTPUTS(VNA&, AS,
LENCAS$)): GOSUB ERRORTRAP

RETURN

Initialize the status byte for entry into the DO
UNTIL loop.

Loop until bit three of the status byte, the error
queue summary, is set.

Read the status byte into the variable STAT% using
a serial poll. The serial poll is an HP-IB function
dedicated specifically to getting the status byte of
an instrument quickly without causing the
instrument to go into remote mode.

Now that the error queue has something in it,
instruct the analyzer to output the error data,
which consists of an error number and an error
message string. This communication with the
network analyzer puts it in remote mode.

Initialize the actual number of bytes read in. This
variable is set during IOENTERS.

Read the error data into one string. This will then
consist of the error number (as a string) and the
error message string.

Extract the error number from the string read in.

Initialize the string counter to begin after the error
number.

Initialize the error message string.

Repeat until the end of the string has been
reached.

Extract the error message from the error data
string one character at a time.

Increment the counter at the next character.

Display the error number and error message
string on the computer CRT.

Return the network analyzer to local mode so that
the front panel is available to the operator.
Perform error trapping.

Indicate audibly that an error occurred.
Continue polling for errors.

End program execution.

Define a routine to trap errors.

Perform error trapping.

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS routine.

Running the program

1.
2.

Unlock | it | cH.2 | CH.1 | CH.2 |Compiets | waiting
N EVENT STATUS REGISTER B

Preset the network analyzer and run the program.

Nothing happens until an error occurs, so generate one. Three possible ways to do this on the
network analyzer are the following:

a. Press a blank softkey.

b. Loosen the R connection.

c. Press [CAL]) [CALIBRATE MENU] [RESPONSE] [DONE: RESPONSE].

. Once an error occurs, the computer will continue to beep and to display the error number

and message until the error queue is empty (until the error number 0 and the error message
NO ERRORS are received).

. The computer will continue to monitor the network analyzer’s error queue until the operator

ends the program by pressing <<CTRL-Break> on the computer keyboard.

SRQ

.t 1 | ° [| |]

7 6 5 4 3 2 1 0
Event Message | Check Event
Request | Stats [inOutput | Eror | Status | Forward | Reverse
Service | pogister | Queve | Queue |Register8| GE GE
128 64 4
ESNB I]
3 3 3 [3
7 6 5 4 3 2 1 0
ALC Search Search Limit Lirmit Data Service S

Fail Fail Faited Failed Entry Routine Complete

[1 1T T [[T Je=

7 6 5 4 3 2 1 0
Syntax
Rg"vor User Error Execution | Sequencing| Query Request | Operation

Request (HPAB) Error Request Error Control | Complete

EVENT STATUS REGISTER

Figure A.1. Status reporting system

65

66

Example A2: Status registers

The following program illustrates how to monitor the analyzer’s Event Status Register from the
computer. The Event Status Registers are 8-bit registers which consist of latched event bits. A
latched bit is set at the onset of the monitored condition. It is cleared when the register is read or
when the command CLES (clear status) is sent.

Each time the network analyzer detects a key press or knob turn, it sets bit 6 of the Event Status
Register. Once the computer detects that bit 6 is set, the key code or knob count can be
requested from the analyzer with KOR?. Note that since the network analyzer is in remote
mode, the normal function of the key pressed is not executed. In effect, the front panel has been
taken over, and the keys could now be redefined.

This example program is stored on the Example Programs disk as IPGA2.BAS.

10
20
30
40
S0

60

70

80

a0

100

110

120

130
140

150

160

170
180
1390
200

210

REM $INCLUDE: ‘QBSETUP’
CLS

ISCs = 7

VNA& = 716

CALL IOTIMEQOUTCISC&, 101):
GOSUB ERRORTRAP

CALL TOABORT(ISC&): GOSUB
ERRORTRAP

CALL TOCLEARCISC&): GOSUB
ERRORTRAP ~

CALL I0EODICISCs, 0): GOSUB
ERRORTRAP

GETKEY: ESTAT! = 0

DO UNTIL (CESTAT! mMOD 128)
»63)

As$ = "ESR?;": GOSUB
100UTS

CALL IDENTER(VNAS,
ESTAT!): GOSUB ERRORTRAP

LOOP

A$ = “KOR?;*": GOSUB
100UTS

CALL IOENTERCVNAS,
KEYCODE!): GOSUB ERRORTRAP

IF KEYCODE! > = 0 THEN

PRINT "KEY CODE = *;
ELSE

PRINT *"KNOB TURN = **;
IF KEYCODE! ¢<—400 THEN

KEYCODE! = KEYCODE! +
32768

Call the QuickBASIC initialization file QBSETUP
Clear the computer CRT.

Assign the interface select code to a variable.
Assign the analyzer’s address to a variable.

Define a system time-out of ten seconds and
perform error trapping,.

Abort any HP-IB transfers and perform error
trapping.

Clear the analyzer’s HP-IB interface and perform
error trapping.

Disable the End-Or-Identify mode for transferring
data and perform error trapping,.

Initialize ESTAT! for entry into the DO UNTIL
loop.

Wait for a key press to be indicated by the setting
of bit 6, User Request, of the Event Status
Register. MOD 128 removes the effect of all higher
value bits (bit 7 is equivalent to 128 in decimal),
and »63 ensures that bit 6, which is equivalent to
64 in decimal, is set.

Request the Event Status Register value from the
analyzer.

Receive the Event Status Register value from the
analyzer, thereby clearing the latched User
Request bit so that old key presses will not trigger
a measurement.

Since the User Request bit has been set, request
the key code or knob count from the analyzer.

Receive the key code or knob count from the
analyzer.

If the code is positive, it was a key press rather
than a knob turn.

The code is negative, so it was a knob turn.

If the turn was a counter-clockwise rotation, the
code needs to be recovered.

220
230
240

250
260

270
280
290

300
310

320

330

END IF
END IF
PRINT KEYCODE!

GOTO GETKEY

CALL 10LOCALCISC&): GOSUB
ERRORTRAP

END
ERRORTRAP:

IF PCIB.ERR <> NOERR THEN
ERROR PCIB.BASERR

RETURN
100UTS:

CALL IOQUTPUTS(VNA&, AS,
LENCAS$)): GOSUB ERRORTRAP

RETURN

Running the program
1. Preset the network analyzer and run the program.

Display the code or knob count on the computer
CRT. :

Wait for the next key press or knob turn.

Return the network analyzer to local mode and
perform error trapping.

End program execution.
Define a routine to trap errors.

Perform error trapping.

Return from the ERRORTRAP routine.

Define a routine to send a command string from
the computer to the analyzer.

Send the command string A$ out to the analyzer
and perform error trapping.

Return from the 100UTS routine.

2. Nothing happens until a key is pressed, so press one.

3. The computer will detect the key press or knob turn and display its code.

4. The computer will continue to monitor the network analyzer’s key presses and knob turns
until the operator ends the program by pressing <CTRL-Break> on the computer key-
board.

67

For more information, call
your local HP sales office
listed in your telephone
directory or an HP regional
office listed below for the
location of your nearest sales
office.

United States:
Hewlett-Packard Company
4 Choke Cherry Road
Rockville, MD 20850

(301) 670-4300

Hewlett-Packard Company
5201 Tollview Drive
Rolling Meadows, IL 60008
(312) 255-9800

Hewlett-Packard Company
5161 Lankershim Blvd.

No. Hollywood, CA 91601
(818) 505-5600

Hewlett-Packard Company
2015 South Park Place
Atlanta, GA 30339

(404) 955-1500

Canada:

Hewlett-Packard Ltd.

6877 Goreway Drive
Mississauga, Ontario L4VIM8
(416) 678-9430

ﬂﬁ HEWLETT

PACKARD

Australia/New Zealand:
Hewlett-Packard Australia Ltd.
31-41 Joseph Street,

Blackburn, Victoria 3130
Melbourne, Australia

(03) 895-2895

Europe/Africa/Middle East:
Hewlett-Packard S.A.
Central Mailing Department,
P.0. Box 529

1180 AM Amstelveen,

The Netherlands

(31) 20/547 9999

Far East:
Hewlett-Packard Asia Ltd.
22 /F Bond Centre

West Tower

89 Queensway

Central, Hong Kong

(5) 8487777

Japan:
Yokogawa-Hewlett-Packard Ltd.
29-21, Takaido-Higashi 3-chome
Suginami-ku, Tokyo 168

(03) 331-6111

Latin America:

Latin American Region Headquarters
Monte Pelvoux Nbr. 111

Lomas de Chapultepec

11000 Mexico, D.F. Mexico

(905) 596-79-33

November 1, 1989

Copyright ©1989
Hewlett-Packard
Company
Printed in U.S.A.
08753-90168

